| dhalflogistic {bayesmeta} | R Documentation |
Half-logistic distribution.
Description
Half-logistic density, distribution, and quantile functions, random number generation and expectation and variance.
Usage
dhalflogistic(x, scale=1, log=FALSE)
phalflogistic(q, scale=1)
qhalflogistic(p, scale=1)
rhalflogistic(n, scale=1)
ehalflogistic(scale=1)
vhalflogistic(scale=1)
Arguments
x, q |
quantile. |
p |
probability. |
n |
number of observations. |
scale |
scale parameter ( |
log |
logical; if |
Details
The half-logistic distribution is simply a zero-mean logistic distribution
that is restricted to take only positive values.
If X\sim\mathrm{logistic}, then
|sX|\sim\mathrm{halflogistic}(\mathrm{scale}\!=\!s).
Value
‘dhalflogistic()’ gives the density function,
‘phalflogistic()’ gives the cumulative distribution
function (CDF),
‘qhalflogistic()’ gives the quantile function (inverse CDF),
and ‘rhalflogistic()’ generates random deviates.
The ‘ehalflogistic()’ and ‘vhalflogistic()’
functions return the corresponding half-logistic distribution's
expectation and variance, respectively.
Author(s)
Christian Roever christian.roever@med.uni-goettingen.de
References
C. Roever, R. Bender, S. Dias, C.H. Schmid, H. Schmidli, S. Sturtz, S. Weber, T. Friede. On weakly informative prior distributions for the heterogeneity parameter in Bayesian random-effects meta-analysis. Research Synthesis Methods, 12(4):448-474, 2021. doi:10.1002/jrsm.1475.
N.L. Johnson, S. Kotz, N. Balakrishnan. Continuous univariate distributions, volume 2, chapter 23.11. Wiley, New York, 2nd edition, 1994.
See Also
dlogis, dhalfnormal,
dlomax, drayleigh,
TurnerEtAlPrior, RhodesEtAlPrior,
bayesmeta.
Examples
#######################
# illustrate densities:
x <- seq(0,6,le=200)
plot(x, dhalfnormal(x), type="l", col="red", ylim=c(0,1),
xlab=expression(tau), ylab=expression("probability density "*f(tau)))
lines(x, dhalflogistic(x), col="green3")
lines(x, dhalfcauchy(x), col="blue")
lines(x, dexp(x), col="cyan")
abline(h=0, v=0, col="grey")
# show log-densities (note the differing tail behaviour):
plot(x, dhalfnormal(x), type="l", col="red", ylim=c(0.001,1), log="y",
xlab=expression(tau), ylab=expression("probability density "*f(tau)))
lines(x, dhalflogistic(x), col="green3")
lines(x, dhalfcauchy(x), col="blue")
lines(x, dexp(x), col="cyan")
abline(v=0, col="grey")