bayesmeta-package {bayesmeta} | R Documentation |
Bayesian Random-Effects Meta-Analysis and Meta-Regression
Description
A collection of functions allowing to derive the posterior distribution of the model parameters in random-effects meta-analysis or meta-regression, and providing functionality to evaluate joint and marginal posterior probability distributions, predictive distributions, shrinkage effects, posterior predictive p-values, etc.
Details
Package: | bayesmeta |
Type: | Package |
Version: | 3.4 |
Date: | 2024-02-15 |
License: | GPL (>=2) |
The main functionality is provided by the bayesmeta()
and bmr()
function. It takes the data (estimates and
associated standard errors) and prior information (effect and
heterogeneity priors), and returns an object containing functions that
allow to derive posterior quantities like joint or marginal densities,
quantiles, etc. The bmr()
function extends the approach
to meta-regression by allowing to specify covariables (moderators) in
addition.
Author(s)
Christian Roever <christian.roever@med.uni-goettingen.de>
References
C. Roever. Bayesian random-effects meta-analysis using the bayesmeta R package. Journal of Statistical Software, 93(6):1-51, 2020. doi:10.18637/jss.v093.i06.
C. Roever, T. Friede. Using the bayesmeta R package for Bayesian random-effects meta-regression. Computer Methods and Programs in Biomedicine, 299:107303, 2023. doi:10.1016/j.cmpb.2022.107303.
See Also
forestplot.bayesmeta
, plot.bayesmeta
,
bmr
.
Examples
# example data by Snedecor and Cochran:
data("SnedecorCochran")
## Not run:
# analysis using improper uniform prior
# (may take a few seconds to compute!):
bma <- bayesmeta(y=SnedecorCochran[,"mean"],
sigma=sqrt(SnedecorCochran[,"var"]),
label=SnedecorCochran[,"no"])
# show some summary statistics:
bma
# show a bit more details:
summary(bma)
# show a forest plot:
forestplot(bma)
# show some more plots:
plot(bma)
## End(Not run)