SidikJonkman2007 {bayesmeta} | R Documentation |
Postoperative complication odds example data
Description
This data set contains the outcomes from 29 randomized clinical trials comparing the odds of postoperative complications in laparoscopic inguinal hernia repair (LIHR) versus conventional open inguinal hernia repair (OIHR).
Usage
data("SidikJonkman2007")
Format
The data frame contains the following columns:
id | character | identifier used in original publication by Memon et al. (2003) |
id.sj | numeric | identifier used by Sidik and Jonkman (2007) |
year | numeric | publication year |
lihr.events | numeric | number of events under LIHR |
lihr.cases | numeric | number of cases under LIHR |
oihr.events | numeric | number of events under OIHR |
oihr.cases | numeric | number of cases under OIHR |
Details
Analysis may be done based on the logarithmic odds ratios:
log(lihr.events
) - log(lihr.cases
-lihr.events
) -
log(oihr.events
) + log(oihr.cases
-oihr.events
)
and corresponding standard errors:
sqrt(1/lihr.events
+ 1/(lihr.cases
-lihr.events
))
+ 1/oihr.events
+ 1/(oihr.cases
-oihr.events
))
(you may also leave these computations to the metafor package's
escalc()
function).
The data set was used to compare different estimators for the
(squared) heterogeneity \tau^2
. The values yielded for this data
set were (see Tab.1 in Sidik and Jonkman (2007)):
method of moments (MM) | 0.429 |
variance component (VC) | 0.841 |
maximum likelihood (ML) | 0.562 |
restricted ML (REML) | 0.598 |
empirical Bayes (EB) | 0.703 |
model error variance (MV) | 0.818 |
variation of MV (MVvc) | 0.747 |
Source
M.A. Memon, N.J. Cooper, B. Memon, M.I. Memon, and K.R. Abrams. Meta-analysis of randomized clinical trials comparing open and laparoscopic inguinal hernia repair. British Journal of Surgery, 90(12):1479-1492, 2003. doi:10.1002/bjs.4301.
References
K. Sidik and J.N. Jonkman. A comparison of heterogeneity variance estimators in combining results of studies. Statistics in Medicine, 26(9):1964-1981, 2007. doi:10.1002/sim.2688.
Examples
data("SidikJonkman2007")
# add log-odds-ratios and corresponding standard errors:
sj <- SidikJonkman2007
sj <- cbind(sj, "log.or"=log(sj[,"lihr.events"])-log(sj[,"lihr.cases"]-sj[,"lihr.events"])
-log(sj[,"oihr.events"])+log(sj[,"oihr.cases"]-sj[,"oihr.events"]),
"log.or.se"=sqrt(1/sj[,"lihr.events"] + 1/(sj[,"lihr.cases"]-sj[,"lihr.events"])
+ 1/sj[,"oihr.events"] + 1/(sj[,"oihr.cases"]-sj[,"oihr.events"])))
## Not run:
# analysis using weakly informative Cauchy prior
# (may take a few seconds to compute!):
ma <- bayesmeta(y=sj[,"log.or"], sigma=sj[,"log.or.se"], label=sj[,"id.sj"],
tau.prior=function(t){dhalfcauchy(t,scale=1)})
# show heterogeneity's posterior density:
plot(ma, which=4, main="Sidik/Jonkman example", prior=TRUE)
# show some numbers (mode, median and mean):
abline(v=ma$summary[c("mode","median","mean"),"tau"], col="blue")
# compare with Sidik and Jonkman's estimates:
sj.estimates <- sqrt(c("MM" = 0.429, # method of moments estimator
"VC" = 0.841, # variance component type estimator
"ML" = 0.562, # maximum likelihood estimator
"REML"= 0.598, # restricted maximum likelihood estimator
"EB" = 0.703, # empirical Bayes estimator
"MV" = 0.818, # model error variance estimator
"MVvc"= 0.747)) # a variation of the MV estimator
abline(v=sj.estimates, col="red", lty="dashed")
# generate forest plot:
fp <- forestplot(ma, exponentiate=TRUE, plot=FALSE)
# add extra columns for ID and year:
labtext <- fp$labeltext
labtext[1,1] <- "ID 2"
labtext[31:32,1] <- ""
labtext <- cbind(c("ID 1", SidikJonkman2007[,"id"], "mean","prediction"),
labtext[,1],
c("year", as.character(SidikJonkman2007[,"year"]), "", ""),
labtext[,-1])
# plot:
forestplot(ma, labeltext=labtext, exponentiate=TRUE,
xlog=TRUE, xlab="odds ratio", xticks=c(0.1,1,10))
## End(Not run)