HinksEtAl2010 {bayesmeta} | R Documentation |
JIA example data
Description
Log odds ratios indicating association of a genetic variant (CCR5) with juvenile idiopathic arthritis (JIA).
Usage
data("HinksEtAl2010")
Format
The data frame contains the following columns:
study | character | publication identifier |
year | numeric | publication year |
country | character | country |
or | numeric | odds ratio (OR) |
or.lower | numeric | lower 95 percent confidence bound for OR |
or.upper | numeric | upper 95 percent confidence bound for OR |
log.or | numeric | logarithmic OR |
log.or.se | numeric | standard error of logarithmic OR |
Details
Results from a genetic association study (Hinks et al, 2010) were combined with data from two additional studies (Prahalad et al., 2006; Lindner et al., 2007) in order to determine the combined evidence regarding the association of a particular genetic marker (CCR5) with juvenile idiopathic arthritis (JIA).
Source
A. Hinks et al. Association of the CCR5 gene with juvenile idiopathic arthritis. Genes and Immunity, 11(7):584-589, 2010. doi:10.1038/gene.2010.25.
References
S. Prahalad et al. Association of two functional polymorphisms in the CCR5 gene with juvenile rheumatoid arthritis. Genes and Immunity, 7:468-475, 2006. doi:10.1038/sj.gene.6364317.
E. Lindner et al. Lack of association between the chemokine receptor 5 polymorphism CCR5delta32 in rheumatoid arthritis and juvenile idiopathic arthritis. BMC Medical Genetics, 8:33, 2007. doi:10.1186/1471-2350-8-33.
C. Roever, G. Knapp, T. Friede. Hartung-Knapp-Sidik-Jonkman approach and its modification for random-effects meta-analysis with few studies. BMC Medical Research Methodology, 15:99, 2015. doi:10.1186/s12874-015-0091-1.
Examples
data("HinksEtAl2010")
## Not run:
# perform meta analysis based on weakly informative half-normal prior:
bma01 <- bayesmeta(y = HinksEtAl2010$log.or,
sigma = HinksEtAl2010$log.or.se,
labels = HinksEtAl2010$study,
tau.prior = function(t){dhalfnormal(t,scale=1.0)})
# perform meta analysis based on slightly more informative half-normal prior:
bma02 <- bayesmeta(y = HinksEtAl2010$log.or,
sigma = HinksEtAl2010$log.or.se,
labels = HinksEtAl2010$study,
tau.prior = function(t){dhalfnormal(t,scale=0.5)})
# show heterogeneity posteriors:
par(mfrow=c(2,1))
plot(bma01, which=4, prior=TRUE, taulim=c(0,1))
plot(bma02, which=4, prior=TRUE, taulim=c(0,1))
par(mfrow=c(1,1))
# show heterogeneity estimates:
rbind("half-normal(1.0)"=bma01$summary[,"tau"],
"half-normal(0.5)"=bma02$summary[,"tau"])
# show q-profile confidence interval for tau in comparison:
require("metafor")
ma03 <- rma.uni(yi=log.or, sei=log.or.se, slab=study, data=HinksEtAl2010)
confint(ma03)$random["tau",c("ci.lb","ci.ub")]
# show I2 values in the relevant range:
tau <- seq(0, 0.7, by=0.1)
cbind("tau"=tau,
"I2" =bma01$I2(tau=tau))
# show effect estimates:
round(rbind("half-normal(1.0)" = bma01$summary[,"mu"],
"half-normal(0.5)" = bma02$summary[,"mu"]), 5)
# show forest plot:
forestplot(bma02)
# show shrinkage estimates:
bma02$theta
## End(Not run)