GoralczykEtAl2011 {bayesmeta} | R Documentation |
Liver transplant example data
Description
Numbers of cases (transplant patients) and events (acute rejections, steroid resistant rejections, and deaths) in experimental and control groups of 19 studies.
Usage
data("GoralczykEtAl2011")
Format
The data frame contains the following columns:
publication | character | publication identifier (first author and publication year) |
year | numeric | publication year |
randomized | factor | randomization status (yes / no / not stated) |
control.type | factor | type of control group (‘concurrent’ or ‘historical’) |
comparison | factor | type of comparison (‘IL-2RA only’, ‘delayed CNI’, or ‘no/low steroids’) |
IL2RA | factor | type of interleukin-2 receptor antagonist (IL-2RA) (‘basiliximab’ or ‘daclizumab’) |
CNI | factor | type of calcineurin inhibitor (CNI) (‘tacrolimus’ or ‘cyclosporine A’) |
MMF | factor | use of mycofenolate mofetil (MMF) (y/n) |
followup | numeric | follow-up time in months |
treat.AR.events | numeric | number of AR events in experimental group |
treat.SRR.events | numeric | number of SRR events in experimental group |
treat.deaths | numeric | number of deaths in experimental group |
treat.total | numeric | number of cases in experimental group |
control.AR.events | numeric | number of AR events in control group |
control.SRR.events | numeric | number of SRR events in control group |
control.deaths | numeric | number of deaths in control group |
control.total | numeric | number of cases in control group |
Details
A systematic literature review investigated the evidence on the effect of Interleukin-2 receptor antagonists (IL-2RA) and resulted in 19 controlled studies reporting acute rejection (AR) and steroid-resistant rejection (SRR) rates as well as mortality in adult liver transplant recipients.
Source
A.D. Goralczyk, N. Hauke, N. Bari, T.Y. Tsui, T. Lorf, A. Obed. Interleukin-2 receptor antagonists for liver transplant recipients: A systematic review and meta-analysis of controlled studies. Hepatology, 54(2):541-554, 2011. doi:10.1002/hep.24385.
See Also
Examples
data("GoralczykEtAl2011")
## Not run:
# compute effect sizes (log odds ratios) from count data
# (using "metafor" package's "escalc()" function):
require("metafor")
goralczyk.es <- escalc(measure="OR",
ai=exp.AR.events, n1i=exp.total,
ci=cont.AR.events, n2i=cont.total,
slab=publication, data=GoralczykEtAl2011)
print(goralczyk.es[,c(1,10,12,13,15,16,17)])
# analyze using weakly informative half-Cauchy prior for heterogeneity:
goralczyk.ma <- bayesmeta(goralczyk.es, tau.prior=function(t){dhalfcauchy(t,scale=1)})
# show summary:
print(goralczyk.ma)
# show forest plot:
forestplot(goralczyk.ma)
## End(Not run)
[Package bayesmeta version 3.4 Index]