gibbsNorm {bayesImageS} | R Documentation |
Fit a univariate normal (Gaussian) distribution to the observed data.
Description
Fit a univariate normal (Gaussian) distribution to the observed data.
Usage
gibbsNorm(y, niter = 1000, priors = NULL)
Arguments
y |
A vector of observed pixel data. |
niter |
The number of iterations of the algorithm to perform. |
priors |
A list of priors for the parameters of the model. |
Value
A list containing MCMC samples for the mean and standard deviation.
Examples
y <- rnorm(100,mean=5,sd=2)
res.norm <- gibbsNorm(y, priors=list(mu=0, mu.sd=1e6, sigma=1e-3, sigma.nu=1e-3))
summary(res.norm$mu[501:1000])
summary(res.norm$sigma[501:1000])
[Package bayesImageS version 0.6-1 Index]