ovbias_lm {bate} | R Documentation |
Compute bias adjusted treatment effect taking three lm objects as input.
Description
Compute bias adjusted treatment effect taking three lm objects as input.
Usage
ovbias_lm(lm_shrt, lm_int, lm_aux, deltalow, deltahigh, Rhigh, e)
Arguments
lm_shrt |
lm object corresponding to the short regression |
lm_int |
lm object corresponding to the intermediate regression |
lm_aux |
lm object corresponding to the auxiliary regression |
deltalow |
The lower limit of delta |
deltahigh |
The upper limit of delta |
Rhigh |
The upper limit of Rmax |
e |
The step size |
Value
List with three elements:
Data |
Data frame containing the bias and bias-adjusted treatment effect for each point on the grid |
bias_Distribution |
Quantiles (2.5,5.0,50,95,97.5) of the empirical distribution of bias |
bstar_Distribution |
Quantiles (2.5,5.0,50,95,97.5) of the empirical distribution of the bias-adjusted treatment effect |
Examples
## Load data set
data("NLSY_IQ")
## Set age and race as factor variables
NLSY_IQ$age <- factor(NLSY_IQ$age)
NLSY_IQ$race <- factor(NLSY_IQ$race)
## Short regression
reg_s <- lm(iq_std ~ BF_months + factor(age) + sex, data = NLSY_IQ)
## Intermediate regression
reg_i <- lm(iq_std ~ BF_months +
factor(age) + sex + income + motherAge +
motherEDU + mom_married + factor(race),
data = NLSY_IQ)
## Auxiliary regression
reg_a <- lm(BF_months ~ factor(age) +
sex + income + motherAge + motherEDU +
mom_married + factor(race), data = NLSY_IQ)
## Set limits for the bounded box
Rlow <- summary(reg_i)$r.squared
Rhigh <- 0.61
deltalow <- 0.01
deltahigh <- 0.99
e <- 0.01
## Not run:
## Compute bias and bias-adjusted treatment effect
ovb_lm <- ovbias_lm(lm_shrt = reg_s,lm_int = reg_i,
lm_aux = reg_a, deltalow=deltalow, deltahigh=deltahigh,
Rhigh=Rhigh, e=e)
## Default quantiles of bias
ovb_lm$bias_Distribution
# Default quantiles of bias-adjusted treatment effect
ovb_lm$bstar_Distribution
## End(Not run)
[Package bate version 0.1.0 Index]