calcAllocProb {batchmix} | R Documentation |
Calculate allocation probabilities
Description
Calculate the empirical allocation probability for each class based on the sampled allocation probabilities.
Usage
calcAllocProb(mcmc_samples, burn = 0, method = "median")
Arguments
mcmc_samples |
Output from “batchSemiSupervisedMixtureModel“. |
burn |
The number of samples to discard. |
method |
The point estimate to use. “method = 'mean'“ or “method = 'median'“. “'median'“ is the default. |
Value
An N x K matrix of class probabilities.
Examples
# Data in matrix format
X <- matrix(c(rnorm(100, 0, 1), rnorm(100, 3, 1)), ncol = 2, byrow = TRUE)
# Initial labelling
labels <- c(
rep(1, 10),
sample(c(1, 2), size = 40, replace = TRUE),
rep(2, 10),
sample(c(1, 2), size = 40, replace = TRUE)
)
fixed <- c(rep(1, 10), rep(0, 40), rep(1, 10), rep(0, 40))
# Batch
batch_vec <- sample(seq(1, 5), replace = TRUE, size = 100)
# Sampling parameters
R <- 1000
thin <- 50
# MCMC samples and BIC vector
samples <- batchSemiSupervisedMixtureModel(X, R, thin, labels, fixed, batch_vec, "MVN")
# Burn in
burn <- 20
eff_burn <- burn / thin
# Probability across classes
probs <- calcAllocProb(samples, burn = burn)
[Package batchmix version 2.2.1 Index]