check_bart_error_assumptions {bartMachine} | R Documentation |
Check BART Error Assumptions
Description
Diagnostic tools to assess whether the errors of the BART model for regression are normally distributed and homoskedastic, as assumed by the model. This function generates a normal quantile plot of the residuals with a Shapiro-Wilks p-value as well as a residual plot.
Usage
check_bart_error_assumptions(bart_machine, hetero_plot = "yhats")
Arguments
bart_machine |
An object of class “bartMachine”. |
hetero_plot |
If “yhats”, the residuals are plotted against the fitted values of the response. If “ys”, the residuals are plotted against the actual values of the response. |
Value
None.
Author(s)
Adam Kapelner and Justin Bleich
See Also
Examples
## Not run:
#generate Friedman data
set.seed(11)
n = 300
p = 5
X = data.frame(matrix(runif(n * p), ncol = p))
y = 10 * sin(pi* X[ ,1] * X[,2]) +20 * (X[,3] -.5)^2 + 10 * X[ ,4] + 5 * X[,5] + rnorm(n)
##build BART regression model
bart_machine = bartMachine(X, y)
#check error diagnostics
check_bart_error_assumptions(bart_machine)
## End(Not run)
[Package bartMachine version 1.3.4.1 Index]