addBanterDetector {banter} | R Documentation |
Add a BANTER Detector Model
Description
Add a detector model to a BANTER classifier.
Usage
addBanterDetector(
x,
data,
name,
ntree,
sampsize = 1,
importance = FALSE,
num.cores = 1
)
removeBanterDetector(x, name)
Arguments
x |
a |
data |
detector data.frame or named list of detector data.frames. If
a data.frame, then |
name |
detector name. |
ntree |
number of trees. |
sampsize |
number or fraction of samples to use in each tree. If < 1, then it will be used to select this fraction of the smallest sample size. |
importance |
retain importance scores in model? Defaults to
|
num.cores |
number of cores to use for Random Forest model. Set to
|
Value
a banter_model
object with the detector model added or
removed.
Author(s)
Eric Archer eric.archer@noaa.gov
References
Rankin, S., Archer, F., Keating, J. L., Oswald, J. N., Oswald, M. , Curtis, A. and Barlow, J. (2017), Acoustic classification of dolphins in the California Current using whistles, echolocation clicks, and burst pulses. Marine Mammal Science 33:520-540. doi:10.1111/mms.12381
Examples
data(train.data)
# initialize BANTER model with event data
bant.mdl <- initBanterModel(train.data$events)
# add the 'bp' (burst pulse) detector model
bant.mdl <- addBanterDetector(
x = bant.mdl,
data = train.data$detectors$bp,
name = "bp",
ntree = 50, sampsize = 1, num.cores = 1
)
bant.mdl
# remove the 'bp' detector model
bant.mdl <- removeBanterDetector(bant.mdl, "bp")
bant.mdl