community_sim {bamm} | R Documentation |
community_bam: Community bamm
Description
Estimate community dynamics using the bamm
framework
Usage
community_sim(
en_models,
ngbs_vect,
init_coords,
nsteps,
threshold_vec = NULL,
stochastic_dispersal = FALSE,
disp_prop2_suitability = TRUE,
disper_prop = 0.5
)
Arguments
en_models |
A stack or directory with the ecological niche models for each species in the community. |
ngbs_vect |
A vector containing the number of neighbors for each
adjacency matrix of each species in the community
see |
init_coords |
A data.frame with 3 columns: sp_name, x and y; x is the longitude and y is the latitude of initial dispersal points |
nsteps |
Number of iteration steps for the simulation. |
threshold_vec |
A vector of threshold values used to bnarize niche models. |
stochastic_dispersal |
Logical. If dispersal depends on a probability of visiting neighbor cells (Moore neighborhood). |
disp_prop2_suitability |
Logical. If probability of dispersal is proportional to the suitability of reachable cells. The proportional value must be declared in the parameter 'disper_prop'. |
disper_prop |
Probability of dispersal to reachable cells. |
Details
Each element in community_sim is an object of class. For more
details about the simulation see sdm_sim
.
bam
.
Value
An object of class community_sim. The object contains simulation results for each species in the community.
Author(s)
Luis Osorio-Olvera & Jorge Soberon
References
SoberĂ³n J, Osorio-Olvera L (2023). “A dynamic theory of the area of distribution.” Journal of Biogeography6, 50, 1037-1048. doi:10.1111/jbi.14587, https://onlinelibrary.wiley.com/doi/abs/10.1111/jbi.14587..
Examples
lagos_path <- system.file("extdata/conejos",
package = "bamm")
enm_path <- list.files(lagos_path,
pattern = ".tif",
full.names = TRUE)[seq(1,10)]
en_models <- raster::stack(enm_path)
ngbs_vect <- sample(1:2,replace = TRUE,
size = raster::nlayers(en_models))
init_coords <- read.csv(file.path(lagos_path,
"lagos_initit.csv"))[seq(1,10),]
nsteps <- 12
sdm_comm <- bamm::community_sim(en_models = en_models,
ngbs_vect = ngbs_vect,
init_coords = init_coords,
nsteps = nsteps)
com_pam <- bamm::csim2pam(sdm_comm,which_steps = seq(1,nsteps))
rich_pam <- pam2richness(com_pam,which_steps = c(1,5,10))
raster::plot(rich_pam)