bam_ssim {bamm} | R Documentation |
bam_ssim: Simulate dispersal dynamics using the set B of the BAM framework.
Description
bam_ssim: Simulate dispersal dynamics using the set B of the BAM framework.
Usage
bam_ssim(
sp1,
sp2,
set_M,
initial_points,
periods_toxic,
periods_suitable,
dispersal_prob = 0.85,
palatable_matrices = FALSE,
nsteps,
progress_bar = TRUE
)
Arguments
sp1 |
Niche model of the focal species (the one that disperses). |
sp2 |
Niche model of the species with whom sp1 interacts (currently no dispersal dynamics for this species). |
set_M |
A setM object containing the adjacency matrix for sp1.
See |
initial_points |
A sparse vector returned by the function
|
periods_toxic |
Time periods that sps2 takes to develop defense mechanisms (i.e. toxic). |
periods_suitable |
This is the time that sp2 takes to become non-toxic |
dispersal_prob |
A numeric value indicating the probability to disperse to neighboring cells. This probability is assumed to be binomially distributed |
palatable_matrices |
Logical. If TRUE palatable matrices for each time will be returned. |
nsteps |
Number of steps to run the simulation |
progress_bar |
Show progress bar |
Details
The returned object inherits from setA
,
setM
classes. Details about the dynamic model
can be found in Soberon and Osorio-Olvera (2022).
Value
An object of class bam. The object contains 12 slots of information (see details) from which simulation results are stored in sdm_sim object, a list of sparse matrices with results of each simulation step. Palatable matrices are returned as a list of sparse matrices with information about palatable pixels for each step of the simulation.
Author(s)
Luis Osorio-Olvera & Jorge Soberón
References
Soberón J, Osorio-Olvera L (2023). “A dynamic theory of the area of distribution.” Journal of Biogeography6, 50, 1037-1048. doi:10.1111/jbi.14587, https://onlinelibrary.wiley.com/doi/abs/10.1111/jbi.14587..
Examples
urap <- system.file("extdata/urania_omph/urania_guanahacabibes.tif",
package = "bamm")
ura <- raster::raster(urap)
ompp <- system.file("extdata/urania_omph/omphalea_guanahacabibes.tif",
package = "bamm")
omp <- raster::raster(ompp)
msparse <- bamm::model2sparse(ura)
init_coordsdf <- data.frame(x=-84.38751, y= 22.02932)
initial_points <- bamm::occs2sparse(modelsparse = msparse,init_coordsdf)
set_M <- bamm::adj_mat(modelsparse = msparse,ngbs = 1)
ura_ssim <- bamm::bam_ssim(sp1=ura, sp2=omp, set_M=set_M,
dispersal_prob = 0.75,
initial_points=initial_points,
periods_toxic=5,
periods_suitable=1,
nsteps=40)
ura_omp <- bamm::sim2Raster(ura_ssim)
raster::plot(ura_omp[[c(1,2,5,10,15,20,30,35,40)]])
if(requireNamespace("animation")){
# Animation example
anp <-tempfile(pattern = "simulation_results_",fileext = ".gif")
#new_sim <- bamm::sim2Animation(sdm_simul = ura_ssim,
# which_steps = seq_len(ura_ssim@sim_steps),
# fmt = "GIF",
# filename = anp)
}