post_stratification {autoMrP} | R Documentation |
Apply post-stratification to classifiers.
Description
Apply post-stratification to classifiers.
Usage
post_stratification(
y,
L1.x,
L2.x,
L2.unit,
L2.reg,
best.subset.opt,
lasso.opt,
lasso.L2.x,
pca.opt,
gb.opt,
svm.opt,
svm.L2.reg,
svm.L2.unit,
svm.L2.x,
mrp.include,
n.minobsinnode,
L2.unit.include,
L2.reg.include,
kernel,
mrp.L2.x,
data,
ebma.fold,
census,
verbose,
deep.mrp,
deep.L2.x,
deep.L2.reg,
deep.splines
)
Arguments
y |
Outcome variable. A character vector containing the column names of
the outcome variable. A character scalar containing the column name of
the outcome variable in |
L1.x |
Individual-level covariates. A character vector containing the
column names of the individual-level variables in |
L2.x |
Context-level covariates. A character vector containing the
column names of the context-level variables in |
L2.unit |
Geographic unit. A character scalar containing the column
name of the geographic unit in |
L2.reg |
Geographic region. A character scalar containing the column
name of the geographic region in |
best.subset.opt |
Optimal tuning parameters from best subset selection
classifier. A list returned by |
lasso.opt |
Optimal tuning parameters from lasso classifier A list
returned by |
lasso.L2.x |
Lasso context-level covariates. A character vector
containing the column names of the context-level variables in
|
pca.opt |
Optimal tuning parameters from best subset selection with
principal components classifier A list returned by |
gb.opt |
Optimal tuning parameters from gradient tree boosting
classifier A list returned by |
svm.opt |
Optimal tuning parameters from support vector machine
classifier A list returned by |
svm.L2.reg |
SVM L2.reg. A logical argument indicating whether
|
svm.L2.unit |
SVM L2.unit. A logical argument indicating whether
|
svm.L2.x |
SVM context-level covariates. A character vector containing
the column names of the context-level variables in |
mrp.include |
Whether to run MRP classifier. A logical argument
indicating whether the standard MRP classifier should be used for
predicting outcome |
n.minobsinnode |
GB minimum number of observations in the terminal
nodes. An integer-valued scalar specifying the minimum number of
observations that each terminal node of the trees must contain. Passed from
|
L2.unit.include |
GB L2.unit. A logical argument indicating whether
|
L2.reg.include |
A logical argument indicating whether |
kernel |
SVM kernel. A character-valued scalar specifying the kernel to
be used by SVM. The possible values are |
mrp.L2.x |
MRP context-level covariates. A character vector containing
the column names of the context-level variables in |
data |
A data.frame containing the survey data used in classifier training. |
ebma.fold |
A data.frame containing the data not used in classifier training. |
census |
Census data. A |
verbose |
Verbose output. A logical argument indicating whether or not
verbose output should be printed. Default is |
deep.mrp |
Deep MRP classifier. A logical argument indicating whether
the deep MRP classifier should be used for predicting outcome |
deep.L2.x |
Deep MRP context-level covariates. A character vector
containing the column names of the context-level variables in |
deep.L2.reg |
Deep MRP L2.reg. A logical argument indicating whether
|
deep.splines |
Deep MRP splines. A logical argument indicating whether
splines should be used in the deep MRP classifier. Default is |