plot_rec {auditor} | R Documentation |
Regression Error Characteristic Curves (REC)
Description
Error Characteristic curves are a generalization of ROC curves. On the x axis of the plot there is an error tolerance and on the y axis there is a percentage of observations predicted within the given tolerance.
Usage
plot_rec(object, ...)
plotREC(object, ...)
Arguments
object |
An object of class |
... |
Other |
Details
REC curve estimates the Cumulative Distribution Function (CDF) of the error
Area Over the REC Curve (REC) is a biased estimate of the expected error
Value
A ggplot object.
References
Bi J., Bennett K.P. (2003). Regression error characteristic curves, in: Twentieth International Conference on Machine Learning (ICML-2003), Washington, DC.
See Also
Examples
dragons <- DALEX::dragons[1:100, ]
# fit a model
model_lm <- lm(life_length ~ ., data = dragons)
# use DALEX package to wrap up a model into explainer
lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
# validate a model with auditor
mr_lm <- model_residual(lm_audit)
plot_rec(mr_lm)
plot(mr_lm, type = "rec")
library(randomForest)
model_rf <- randomForest(life_length~., data = dragons)
rf_audit <- audit(model_rf, data = dragons, y = dragons$life_length)
mr_rf <- model_residual(rf_audit)
plot_rec(mr_lm, mr_rf)
plot(mr_lm, mr_rf, type = "rec")
[Package auditor version 1.3.5 Index]