plot_prediction {auditor} | R Documentation |
Predicted response vs Observed or Variable Values
Description
Plot of predicted response vs observed or variable Values.
Usage
plot_prediction(object, ..., variable = "_y_", smooth = FALSE, abline = FALSE)
plotPrediction(object, ..., variable = NULL, smooth = FALSE, abline = FALSE)
Arguments
object |
An object of class |
... |
Other |
variable |
Name of variable to order residuals on a plot.
If |
smooth |
Logical, indicates whenever smooth line should be added. |
abline |
Logical, indicates whenever function |
Value
A ggplot2 object.
Examples
dragons <- DALEX::dragons[1:100, ]
# fit a model
model_lm <- lm(life_length ~ ., data = dragons)
lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
# validate a model with auditor
mr_lm <- model_residual(lm_audit)
# plot results
plot_prediction(mr_lm, abline = TRUE)
plot_prediction(mr_lm, variable = "height", smooth = TRUE)
plot(mr_lm, type = "prediction", abline = TRUE)
library(randomForest)
model_rf <- randomForest(life_length~., data = dragons)
rf_audit <- audit(model_rf, data = dragons, y = dragons$life_length)
mr_rf <- model_residual(rf_audit)
plot_prediction(mr_lm, mr_rf, variable = "height", smooth = TRUE)
[Package auditor version 1.3.5 Index]