plotD3_rec {auditor} | R Documentation |
Regression Error Characteristic Curves (REC) in D3 with r2d3 package.
Description
Error Characteristic curves are a generalization of ROC curves. On the x axis of the plot there is an error tolerance and on the y axis there is a percentage of observations predicted within the given tolerance.
Usage
plotD3_rec(object, ..., scale_plot = FALSE)
plotD3REC(object, ..., scale_plot = FALSE)
Arguments
object |
An object of class 'auditor_model_residual' created with |
... |
Other 'auditor_model_residual' objects to be plotted together. |
scale_plot |
Logical, indicates whenever the plot should scale with height. By default it's FALSE. |
Details
REC curve estimates the Cumulative Distribution Function (CDF) of the error
Area Over the REC Curve (REC) is a biased estimate of the expected error
Value
a r2d3
object
References
Bi J., Bennett K.P. (2003). Regression error characteristic curves, in: Twentieth International Conference on Machine Learning (ICML-2003), Washington, DC.
See Also
Examples
dragons <- DALEX::dragons[1:100, ]
# fit a model
model_lm <- lm(life_length ~ ., data = dragons)
lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
# validate a model with auditor
mr_lm <- model_residual(lm_audit)
plotD3_rec(mr_lm)
library(randomForest)
model_rf <- randomForest(life_length~., data = dragons)
rf_audit <- audit(model_rf, data = dragons, y = dragons$life_length)
mr_rf <- model_residual(rf_audit)
plotD3_rec(mr_lm, mr_rf)