| subset.alldiffs {asremlPlus} | R Documentation |
Subsets the components in an alldiffs.object according to the supplied condition.
Description
Subsets each of the components of an alldiffs.object. The subset is
determined by applying the condition to the prediction component to
determine which of its rows are to be included in the subset. Then, if present,
this subset is applied to the rows of backtransforms and to the rows
and columns of differences, p.differences and sed
components. In addition, if sed is present, recalcLSD.alldiffs
is called to recalculate the values in the LSD.frame stored in the
LSD component, with any arguments supplied via the ...
argument passed ot it.
The select argument of subset is not implemented, but can be
achieved for variables in the classify using the rmClassifyVars
argument.
Usage
## S3 method for class 'alldiffs'
subset(x, subset = rep(TRUE, nrow(x$predictions)),
rmClassifyVars = NULL, ...)
Arguments
x |
An |
subset |
A |
rmClassifyVars |
A |
... |
further arguments passed to |
Value
An alldiffs.object with the following components of the supplied
alldiffs.object subsetted, if present in the original object:
predictions, vcov, backtransforms, differences,
p.differences and sed. In addition, if sed is present, the
LSD.frame in the LSD component will be recalculated.
Author(s)
Chris Brien
See Also
as.alldiffs, allDifferences.data.frame,
print.alldiffs, sort.alldiffs,
redoErrorIntervals.alldiffs, recalcLSD.alldiffs,
predictPlus.asreml, predictPresent.asreml
Examples
data(WaterRunoff.dat)
##Use asreml to get predictions and associated statistics
## Not run:
asreml.options(keep.order = TRUE) #required for asreml-R4 only
current.asr <- asreml(fixed = pH ~ Benches + (Sources * (Type + Species)),
random = ~ Benches:MainPlots,
keep.order=TRUE, data= WaterRunoff.dat)
current.asrt <- as.asrtests(current.asr, NULL, NULL)
TS.diffs <- predictPlus.asreml(classify = "Sources:Type",
asreml.obj = current.asr, tables = "none",
wald.tab = current.asrt$wald.tab,
present = c("Type","Species","Sources"))
## End(Not run)
## Use lmeTest and emmmeans to get predictions and associated statistics
if (requireNamespace("lmerTest", quietly = TRUE) &
requireNamespace("emmeans", quietly = TRUE))
{
m1.lmer <- lmerTest::lmer(pH ~ Benches + (Sources * (Type + Species)) +
(1|Benches:MainPlots),
data=na.omit(WaterRunoff.dat))
TS.emm <- emmeans::emmeans(m1.lmer, specs = ~ Sources:Type)
TS.preds <- summary(TS.emm)
den.df <- min(TS.preds$df, na.rm = TRUE)
## Modify TS.preds to be compatible with a predictions.frame
TS.preds <- as.predictions.frame(TS.preds, predictions = "emmean",
se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))
## Form an all.diffs object and check its validity
TS.vcov <- vcov(TS.emm)
TS.diffs <- allDifferences(predictions = TS.preds, classify = "Sources:Type",
vcov = TS.vcov, tdf = den.df)
validAlldiffs(TS.diffs)
}
## Plot p-values for predictions obtained using asreml or lmerTest
if (exists("TS.diffs"))
{
##Use subset.alldiffs to select a subset of the alldiffs object
TS.diffs.subs <- subset(TS.diffs,
subset = grepl("R", Sources, fixed = TRUE) &
Type %in% c("Control","Medicinal"))
}