recalcLSD.alldiffs {asremlPlus}R Documentation

Adds or recalculates the LSD.frame that is a component of an alldiffs.object.

Description

Given an alldiffs.object, adds or recalculate its LSD.frame. N.B. No changes are made to the error.intervals — use redoErrorIntervals.alldiffs to modify both the error.intervals and the LSD.frame.

Usage

## S3 method for class 'alldiffs'
recalcLSD(alldiffs.obj, LSDtype = "overall", LSDsupplied = NULL, 
          LSDby = NULL, LSDstatistic = "mean", LSDaccuracy = "maxAbsDeviation", 
          alpha = 0.05, ...)

Arguments

alldiffs.obj

An alldiffs.object.

LSDtype

A character string that can be overall, factor.combinations, per.prediction or supplied. It determines whether the values stored in a row of a LSD.frame are the values calculated (i) overall from the LSD values for all pairwise comparison2, (ii) the values calculated from the pairwise LSDs for the levels of each factor.combination, unless there is only one prediction for a level of the factor.combination, when a notional LSD is calculated, (iii) per.prediction, being based, for each prediction, on all pairwise differences involving that prediction, or (iv) as supplied values of the LSD, specified with the LSDsupplied argument; these supplied values are to be placed in the assignedLSD column of the LSD.frame stored in an alldiffs.object so that they can be used in LSD calculations.

See LSD.frame for further information on the values in a row of this data.frame and how they are calculated.

LSDsupplied

A data.frame or a named numeric containing a set of LSD values that correspond to the observed combinations of the values of the LSDby variables in the predictions.frame or a single LSD value that is an overall LSD. If a data.frame, it may have (i) a column for the LSDby variable and a column of LSD values or (ii) a single column of LSD values with rownames being the combinations of the observed values of the LSDby variables. Any name can be used for the column of LSD values; assignedLSD is sensible, but not obligatory. Otherwise, a numeric containing the LSD values, each of which is named for the observed combination of the values of the LSDby variables to which it corresponds. (Applying the function dae::fac.combine to the predictions component is one way of forming the required combinations for the (row) names.) The values supplied will be incorporated into assignedLSD column of the LSD.frame stored as the LSD component of the alldiffs.object.

LSDby

A character (vector) of variables names, being the names of the factors or numerics in the classify; for each combination of their levels and values, there will be or is a row in the LSD.frame stored in the LSD component of the alldiffs.object when LSDtype is factor.combinatons.

LSDstatistic

A character nominating one or more of minimum, q10, q25, mean, median, q75, q90 or maximum as the value(s) to be stored in the assignedLSD column in an LSD.frame; the values in the assignedLSD column are used in computing halfLeastSignificant error.intervals. Here q10, q25, q75 and q90 indicate the sample quantiles corresponding to probabilities of 0.1, 0.25, 0.75 and 0.9 for the group of LSDs from which a single LSD value is calculated. The function quantile is used to obtain them. The mean LSD is calculated as the square root of the mean of the squares of the LSDs for the group. The median is calculated using the median function. Multiple values are only produced for LSDtype set to factor.combination, in which case LSDby must not be NULL and the number of values must equal the number of observed combinations of the values of the variables specified by LSDby. If LSDstatistic is NULL, it is reset to mean.

LSDaccuracy

A character nominating one of maxAbsDeviation, maxDeviation, q90Deviation or RootMeanSqDeviation as the statistic to be calculated as a measure of the accuracy of assignedLSD. The option q90Deviation produces the sample quantile corresponding to a probability of 0.90. The deviations are the differences between the LSDs used in calculating the LSD statistics and each assigned LSD and the accuracy is expressed as a proportion of the assigned LSD value. The calculated values are stored in the column named accuracyLSD in an LSD.frame.

alpha

The significance level for an LSD to compare a pair of predictions. It is stored as an attribute to the alldiffs.object.

...

further arguments passed to allDifferences.data.frame; attributes transform.power, offset and scale cannot be passed.

Value

An alldiffs.object with components predictions, vcov, differences, p.differences sed, LSD and, if present in alldiffs.obj, backtransforms.

Author(s)

Chris Brien

See Also

asremlPlus-package, as.alldiffs, sort.alldiffs, subset.alldiffs, print.alldiffs,
renewClassify.alldiffs, exploreLSDs.alldiffs, pickLSDstatistics.alldiffs,
redoErrorIntervals.alldiffs, plotPredictions.data.frame, predictPlus.asreml,
predictPresent.asreml

Examples

data(WaterRunoff.dat)

##Use asreml to get predictions and associated statistics

## Not run: 
asreml.options(keep.order = TRUE) #required for asreml-R4 only
current.asr <- asreml(fixed = pH ~ Benches + (Sources * (Type + Species)), 
                      random = ~ Benches:MainPlots,
                      keep.order=TRUE, data= WaterRunoff.dat)
current.asrt <- as.asrtests(current.asr, NULL, NULL)
TS.diffs <- predictPlus(classify = "Sources:Type", 
                        asreml.obj = current.asr, 
                        wald.tab = current.asrt$wald.tab, 
                        present = c("Sources", "Type", "Species"))

## End(Not run)

## Use lmeTest and emmmeans to get predictions and associated statistics

if (requireNamespace("lmerTest", quietly = TRUE) & 
    requireNamespace("emmeans", quietly = TRUE))
{
  m1.lmer <- lmerTest::lmer(pH ~ Benches + (Sources * (Type + Species)) + 
                              (1|Benches:MainPlots),
                            data=na.omit(WaterRunoff.dat))
  TS.emm <- emmeans::emmeans(m1.lmer, specs = ~ Sources:Species)
  TS.preds <- summary(TS.emm)
  den.df <- min(TS.preds$df, na.rm = TRUE)
  ## Modify TS.preds to be compatible with a predictions.frame
  TS.preds <- as.predictions.frame(TS.preds, predictions = "emmean", 
                                   se = "SE", interval.type = "CI", 
                                   interval.names = c("lower.CL", "upper.CL"))
  
  ## Form an all.diffs object and check its validity
  TS.vcov <- vcov(TS.emm)
  TS.diffs <- allDifferences(predictions = TS.preds, classify = "Sources:Species", 
                             vcov = TS.vcov, tdf = den.df)
  validAlldiffs(TS.diffs)
}  

## Plot p-values for predictions obtained using asreml or lmerTest
if (exists("TS.diffs"))
{
  ##Recalculate the LSD values for predictions obtained using asreml or lmerTest  
  TS.diffs <- recalcLSD.alldiffs(TS.diffs, LSDtype = "factor.combinations", 
                                 LSDby = "Sources")
}

[Package asremlPlus version 4.4.35 Index]