| as.alldiffs {asremlPlus} | R Documentation |
Forms an alldiffs.object from the supplied predictions, along with those statistics,
associated with the predictions and their pairwise differences, that have been supplied.
Description
Creates an alldiffs.object that consists of a list
containing the following components: predictions, vcov, differences,
p.differences, sed, LSD and backtransforms.
Predictions must be supplied to the function while the others will be set
only if they are supplied; those not supplied are set to NULL.
It also has attributes response, response.title, term,
classify, tdf, tdf, alpha, sortFactor and sortOrder.
which will be set to the values supplied or NULL if none are supplied.
Usage
as.alldiffs(predictions, vcov = NULL, differences = NULL,
p.differences = NULL, sed = NULL, LSD = NULL,
backtransforms = NULL,
response = NULL, response.title = NULL,
term = NULL, classify = NULL,
tdf = NULL, alpha = 0.05,
sortFactor = NULL, sortOrder = NULL)
Arguments
predictions |
A |
differences |
A |
p.differences |
A |
sed |
A |
vcov |
A |
LSD |
An |
backtransforms |
A |
response |
A |
response.title |
A |
term |
A |
classify |
A character string giving the variables that define the margins
of the multiway table used in the prediction. Multiway tables are
specified by forming an interaction type term from the
classifying variables, that is, separating the variable names
with the |
tdf |
an |
alpha |
A |
sortFactor |
A |
sortOrder |
A The following creates a |
Value
An S3-class alldiffs.object. Also, see predictPlus.asreml for
more information.
Author(s)
Chris Brien
See Also
asremlPlus-package, alldiffs.object, is.alldiffs, as.alldiffs,
print.alldiffs,
sort.alldiffs, subset.alldiffs, allDifferences.data.frame,
renewClassify.alldiffs, redoErrorIntervals.alldiffs, recalcLSD.alldiffs,
predictPlus.asreml, plotPredictions.data.frame, predictPresent.asreml
Examples
data(Oats.dat)
## Use asreml to get predictions and associated statistics
## Not run:
m1.asr <- asreml(Yield ~ Nitrogen*Variety,
random=~Blocks/Wplots,
data=Oats.dat)
current.asrt <- as.asrtests(m1.asr)
Var.pred <- asreml::predict.asreml(m1.asr, classify="Nitrogen:Variety",
sed=TRUE)
if (getASRemlVersionLoaded(nchar = 1) == "3")
Var.pred <- Var.pred$predictions
Var.preds <- Var.pred$pvals
Var.sed <- Var.pred$sed
Var.vcov <- NULL
## End(Not run)
## Use lmerTest and emmmeans to get predictions and associated statistics
if (requireNamespace("lmerTest", quietly = TRUE) &
requireNamespace("emmeans", quietly = TRUE))
{
m1.lmer <- lmerTest::lmer(Yield ~ Nitrogen*Variety + (1|Blocks/Wplots),
data=Oats.dat)
Var.emm <- emmeans::emmeans(m1.lmer, specs = ~ Nitrogen:Variety)
Var.preds <- summary(Var.emm)
den.df <- min(Var.preds$df)
## Modify Var.preds to be compatible with a predictions.frame
Var.preds <- as.predictions.frame(Var.preds, predictions = "emmean",
se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))
Var.vcov <- vcov(Var.emm)
Var.sed <- NULL
}
## Use the predictions obtained with either asreml or lmerTest
if (exists("Var.preds"))
{
## Form an all.diffs object
Var.diffs <- as.alldiffs(predictions = Var.preds, classify = "Nitrogen:Variety",
sed = Var.sed, vcov = Var.vcov, tdf = den.df)
## Check the class and validity of the alldiffs object
is.alldiffs(Var.diffs)
validAlldiffs(Var.diffs)
}