asmbPLSDA.predict {asmbPLS} | R Documentation |
Using an asmbPLS-DA model for classification of new samples
Description
Derives classification for new samples from a model fitted by the function
asmbPLSDA.fit
.
Usage
asmbPLSDA.predict(fit.results, X.matrix.new, PLS.comp, method = NULL)
Arguments
fit.results |
The output of |
X.matrix.new |
A predictors matrix, whose predictors are the same as the predictors in model fitting. |
PLS.comp |
Number of PLS components used for prediction. |
method |
Decision rule used for prediction. For binary outcome, the
methods include " |
Value
asmbPLSDA.predict
returns a list containing the following components:
Y_pred |
Predicted class for the new sampels. |
Y_pred_numeric |
Predicted Y values for the new samples, different decision rules can be used to obtain different Y_pred. |
NewX_super_score |
Predicted super score for new samples, which can be used as predictors for other classification algorithms. |
method |
Decision rule used for preidction. |
Examples
## Use the example dataset
data(asmbPLSDA.example)
X.matrix = asmbPLSDA.example$X.matrix
X.matrix.new = asmbPLSDA.example$X.matrix.new
Y.matrix.binary = asmbPLSDA.example$Y.matrix.binary
Y.matrix.multiclass = asmbPLSDA.example$Y.matrix.morethan2levels
X.dim = asmbPLSDA.example$X.dim
PLS.comp = asmbPLSDA.example$PLS.comp
quantile.comb = asmbPLSDA.example$quantile.comb
## asmbPLSDA fit for binary outcome
asmbPLSDA.fit.binary <- asmbPLSDA.fit(X.matrix = X.matrix,
Y.matrix = Y.matrix.binary,
PLS.comp = PLS.comp,
X.dim = X.dim,
quantile.comb = quantile.comb,
outcome.type = "binary")
## asmbPLSDA fit for categorical outcome with more than 2 levels
asmbPLSDA.fit.multiclass <- asmbPLSDA.fit(X.matrix = X.matrix,
Y.matrix = Y.matrix.multiclass,
PLS.comp = PLS.comp,
X.dim = X.dim,
quantile.comb = quantile.comb,
outcome.type = "multiclass")
## asmbPLSDA prediction for the new data, you could use different numbers of
## PLS components for prediction
## Use only the first PLS component
Y.pred.binary.1 <- asmbPLSDA.predict(asmbPLSDA.fit.binary,
X.matrix.new,
PLS.comp = 1)
## Use the first two PLS components
Y.pred.binary.2 <- asmbPLSDA.predict(asmbPLSDA.fit.binary,
X.matrix.new,
PLS.comp = 2)
## PLS components for prediction
Y.pred.multiclass.1 <- asmbPLSDA.predict(asmbPLSDA.fit.multiclass,
X.matrix.new,
PLS.comp = 1)
## Use the first two PLS components
Y.pred.multiclass.2 <- asmbPLSDA.predict(asmbPLSDA.fit.multiclass,
X.matrix.new,
PLS.comp = 2)