| asmbPLS-package | Predicting and Classifying Patient Phenotypes with Multi-Omics Data |
| asmbPLS | Predicting and Classifying Patient Phenotypes with Multi-Omics Data |
| asmbPLS.cv | Cross-validation for asmbPLS to find the best combinations of quantiles for prediction |
| asmbPLS.example | Example data for asmbPLS algorithm |
| asmbPLS.fit | asmbPLS for block-structured data |
| asmbPLS.predict | Using an asmbPLS model for prediction of new samples |
| asmbPLSDA.cv | Cross-validation for asmbPLS-DA to find the best combinations of quantiles for classification |
| asmbPLSDA.example | Example data for asmbPLS-DA algorithm |
| asmbPLSDA.fit | asmbPLS-DA for block-structured data |
| asmbPLSDA.predict | Using an asmbPLS-DA model for classification of new samples |
| asmbPLSDA.vote.fit | asmbPLS-DA vote model fit |
| asmbPLSDA.vote.predict | Using an asmbPLS-DA vote model for classification of new samples |
| mbPLS.fit | mbPLS for block-structured data |
| meanimp | Mean imputation for the survival time |
| plotCor | Graphical output for the asmbPLS-DA framework |
| plotPLS | PLS plot for asmbPLS-DA |
| plotRelevance | Relevance plot for asmbPLS-DA |
| quantileComb | Create the quantile combination set for asmbPLS and asmbPLS-DA |
| to.categorical | Converts a class vector to a binary class matrix |