Predicting and Classifying Patient Phenotypes with Multi-Omics Data


[Up] [Top]

Documentation for package ‘asmbPLS’ version 1.0.0

Help Pages

asmbPLS-package Predicting and Classifying Patient Phenotypes with Multi-Omics Data
asmbPLS Predicting and Classifying Patient Phenotypes with Multi-Omics Data
asmbPLS.cv Cross-validation for asmbPLS to find the best combinations of quantiles for prediction
asmbPLS.example Example data for asmbPLS algorithm
asmbPLS.fit asmbPLS for block-structured data
asmbPLS.predict Using an asmbPLS model for prediction of new samples
asmbPLSDA.cv Cross-validation for asmbPLS-DA to find the best combinations of quantiles for classification
asmbPLSDA.example Example data for asmbPLS-DA algorithm
asmbPLSDA.fit asmbPLS-DA for block-structured data
asmbPLSDA.predict Using an asmbPLS-DA model for classification of new samples
asmbPLSDA.vote.fit asmbPLS-DA vote model fit
asmbPLSDA.vote.predict Using an asmbPLS-DA vote model for classification of new samples
mbPLS.fit mbPLS for block-structured data
meanimp Mean imputation for the survival time
plotCor Graphical output for the asmbPLS-DA framework
plotPLS PLS plot for asmbPLS-DA
plotRelevance Relevance plot for asmbPLS-DA
quantileComb Create the quantile combination set for asmbPLS and asmbPLS-DA
to.categorical Converts a class vector to a binary class matrix