asmbPLS-package |
Predicting and Classifying Patient Phenotypes with Multi-Omics Data |
asmbPLS |
Predicting and Classifying Patient Phenotypes with Multi-Omics Data |
asmbPLS.cv |
Cross-validation for asmbPLS to find the best combinations of quantiles for prediction |
asmbPLS.example |
Example data for asmbPLS algorithm |
asmbPLS.fit |
asmbPLS for block-structured data |
asmbPLS.predict |
Using an asmbPLS model for prediction of new samples |
asmbPLSDA.cv |
Cross-validation for asmbPLS-DA to find the best combinations of quantiles for classification |
asmbPLSDA.example |
Example data for asmbPLS-DA algorithm |
asmbPLSDA.fit |
asmbPLS-DA for block-structured data |
asmbPLSDA.predict |
Using an asmbPLS-DA model for classification of new samples |
asmbPLSDA.vote.fit |
asmbPLS-DA vote model fit |
asmbPLSDA.vote.predict |
Using an asmbPLS-DA vote model for classification of new samples |
mbPLS.fit |
mbPLS for block-structured data |
meanimp |
Mean imputation for the survival time |
plotCor |
Graphical output for the asmbPLS-DA framework |
plotPLS |
PLS plot for asmbPLS-DA |
plotRelevance |
Relevance plot for asmbPLS-DA |
quantileComb |
Create the quantile combination set for asmbPLS and asmbPLS-DA |
to.categorical |
Converts a class vector to a binary class matrix |