plot.pairw {asbio} | R Documentation |
Plots confidence intervals and/or bars with letters indicating significant differences for objects from class pairw
Description
Provides a utility confidence interval plotting function for objects of class = "pairw"
, e.g., objects from pairw.anova
, pair.fried
, and pairw.kw
.
Usage
## S3 method for class 'pairw'
plot(x, type = 1, lcol = 1, lty = NULL, lwd = NULL,
cap.length = 0.1, xlab = "", main = NULL, explanation = TRUE,...)
Arguments
x |
An object of class |
type |
Two types of plots can be made. Type 1 is a barplot with identical letters over bars if the differences are not significant after adjustment for simultaneous inference. Type 1 plots can be modified using |
lcol |
Confidence bar line color for a type 2 plot, see |
lty |
Confidence bar line type, see |
lwd |
Confidence bar line width, see |
cap.length |
Widths for caps on interval bars (in inches). |
xlab |
X-axis label. |
main |
Main caption. Defaults to a descriptive head. |
explanation |
Logical. If |
... |
Additional arguments from |
Author(s)
Ken Aho. Letters for type 1 graphs obtained using the function multcompLetters
from package multcompView which uses the algorithm of Peipho (2004).
References
Piepho, H-P (2004) An algorithm for a letter-based representation of all-pairwise comparisons. Journal of Computational and Graphical Statistics 13(2): 456-466.
See Also
pairw.anova
, pairw.fried
, pairw.kw
, barplot
, bplot
, multcompLetters
Examples
eggs<-c(11,17,16,14,15,12,10,15,19,11,23,20,18,17,27,33,22,26,28)
trt<-as.factor(c(1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4,4))
# Type 1 plot
plot(pairw.anova(y = eggs, x = trt, method = "scheffe", conf = .8), int = "CI",
conf = .8)
# Type 2 plot
plot(pairw.anova(y = eggs, x = trt, method = "scheffe", conf = .8), type = 2)
# Data from Fox and Randall (1970)
tremors <- data.frame(freq = c(2.58, 2.63, 2.62, 2.85, 3.01, 2.7, 2.83, 3.15,
3.43, 3.47, 2.78, 2.71, 3.02, 3.14, 3.35, 2.36, 2.49, 2.58, 2.86, 3.1, 2.67,
2.96, 3.08, 3.32, 3.41, 2.43, 2.5, 2.85, 3.06, 3.07), weights =
factor(rep(c(7.5, 5, 2.5, 1.25, 0), 6)), block = factor(rep (1 : 6, each = 5)))
plot(with(tremors, pairw.fried(y = freq, x = weights, blocks = block, nblocks =
6, conf = .95)), loc.meas = median, int = "IQR", bar.col = "lightgreen",
lett.side = 4, density = 3, horiz = TRUE) # Note how blocking increases power
rye.data <- data.frame(rye = c(50, 49.8, 52.3, 44.5, 62.3, 74.8, 72.5, 80.2,
47.6, 39.5, 47.7,50.7), nutrient = factor(c(rep(1, 4), rep(2, 4), rep(3, 4))))
plot(with(rye.data, pairw.kw(y = rye, x = nutrient, conf = .95)), type = 2)