register_scalar_function {arrow} | R Documentation |
Register user-defined functions
Description
These functions support calling R code from query engine execution
(i.e., a dplyr::mutate()
or dplyr::filter()
on a Table or Dataset).
Use register_scalar_function()
attach Arrow input and output types to an
R function and make it available for use in the dplyr interface and/or
call_function()
. Scalar functions are currently the only type of
user-defined function supported. In Arrow, scalar functions must be
stateless and return output with the same shape (i.e., the same number
of rows) as the input.
Usage
register_scalar_function(name, fun, in_type, out_type, auto_convert = FALSE)
Arguments
name |
The function name to be used in the dplyr bindings |
fun |
An R function or rlang-style lambda expression. The function
will be called with a first argument |
in_type |
A DataType of the input type or a |
out_type |
A DataType of the output type or a function accepting
a single argument ( |
auto_convert |
Use |
Value
NULL
, invisibly
Examples
library(dplyr, warn.conflicts = FALSE)
some_model <- lm(mpg ~ disp + cyl, data = mtcars)
register_scalar_function(
"mtcars_predict_mpg",
function(context, disp, cyl) {
predict(some_model, newdata = data.frame(disp, cyl))
},
in_type = schema(disp = float64(), cyl = float64()),
out_type = float64(),
auto_convert = TRUE
)
as_arrow_table(mtcars) %>%
transmute(mpg, mpg_predicted = mtcars_predict_mpg(disp, cyl)) %>%
collect() %>%
head()