mcsamp {arm} | R Documentation |
Generic Function to Run ‘mcmcsamp()’ in lme4
Description
The quick function for MCMC sampling for lmer and glmer objects and convert to Bugs objects for easy display.
Usage
## Default S3 method:
mcsamp(object, n.chains=3, n.iter=1000, n.burnin=floor(n.iter/2),
n.thin=max(1, floor(n.chains * (n.iter - n.burnin)/1000)),
saveb=TRUE, deviance=TRUE, make.bugs.object=TRUE)
## S4 method for signature 'merMod'
mcsamp(object, ...)
Arguments
object |
|
n.chains |
number of MCMC chains |
n.iter |
number of iteration for each MCMC chain |
n.burnin |
number of burnin for each MCMC chain,
Default is |
n.thin |
keep every kth draw from each MCMC chain. Must be a positive integer.
Default is |
saveb |
if 'TRUE', causes the values of the random effects in each sample to be saved. |
deviance |
compute deviance for |
make.bugs.object |
tranform the output into bugs object, default is TRUE |
... |
further arguments passed to or from other methods. |
Details
This function generates a sample from the posterior
distribution of the parameters of a fitted model using Markov
Chain Monte Carlo methods. It automatically simulates multiple
sequences and allows convergence to be monitored. The function relies on
mcmcsamp
in lme4
.
Value
An object of (S3) class '"bugs"' suitable for use with the functions in the "R2WinBUGS" package.
Author(s)
Andrew Gelman gelman@stat.columbia.edu; Yu-Sung Su ys463@columbia.edu
References
Andrew Gelman and Jennifer Hill, Data Analysis Using Regression and Multilevel/Hierarchical Models, Cambridge University Press, 2006.
Douglas Bates and Deepayan Sarkar, lme4: Linear mixed-effects models using S4 classes.
See Also
Examples
## Here's a simple example of a model of the form, y = a + bx + error,
## with 10 observations in each of 10 groups, and with both the intercept
## and the slope varying by group. First we set up the model and data.
##
# group <- rep(1:10, rep(10,10))
# group2 <- rep(1:10, 10)
# mu.a <- 0
# sigma.a <- 2
# mu.b <- 3
# sigma.b <- 4
# rho <- 0.56
# Sigma.ab <- array (c(sigma.a^2, rho*sigma.a*sigma.b,
# rho*sigma.a*sigma.b, sigma.b^2), c(2,2))
# sigma.y <- 1
# ab <- mvrnorm (10, c(mu.a,mu.b), Sigma.ab)
# a <- ab[,1]
# b <- ab[,2]
# d <- rnorm(10)
#
# x <- rnorm (100)
# y1 <- rnorm (100, a[group] + b*x, sigma.y)
# y2 <- rbinom(100, 1, prob=invlogit(a[group] + b*x))
# y3 <- rnorm (100, a[group] + b[group]*x + d[group2], sigma.y)
# y4 <- rbinom(100, 1, prob=invlogit(a[group] + b*x + d[group2]))
#
##
## Then fit and display a simple varying-intercept model:
#
# M1 <- lmer (y1 ~ x + (1|group))
# display (M1)
# M1.sim <- mcsamp (M1)
# print (M1.sim)
# plot (M1.sim)
##
## Then the full varying-intercept, varying-slope model:
##
# M2 <- lmer (y1 ~ x + (1 + x |group))
# display (M2)
# M2.sim <- mcsamp (M2)
# print (M2.sim)
# plot (M2.sim)
##
## Then the full varying-intercept, logit model:
##
# M3 <- lmer (y2 ~ x + (1|group), family=binomial(link="logit"))
# display (M3)
# M3.sim <- mcsamp (M3)
# print (M3.sim)
# plot (M3.sim)
##
## Then the full varying-intercept, varying-slope logit model:
##
# M4 <- lmer (y2 ~ x + (1|group) + (0+x |group),
# family=binomial(link="logit"))
# display (M4)
# M4.sim <- mcsamp (M4)
# print (M4.sim)
# plot (M4.sim)
#
##
## Then non-nested varying-intercept, varying-slop model:
##
# M5 <- lmer (y3 ~ x + (1 + x |group) + (1|group2))
# display(M5)
# M5.sim <- mcsamp (M5)
# print (M5.sim)
# plot (M5.sim)