AnnData {anndata} | R Documentation |
Create an Annotated Data Matrix
Description
AnnData
stores a data matrix X
together with annotations
of observations obs
(obsm
, obsp
), variables var
(varm
, varp
),
and unstructured annotations uns
.
An AnnData
object adata
can be sliced like a data frame,
for instance adata_subset <- adata[, list_of_variable_names]
. AnnData
’s
basic structure is similar to R's ExpressionSet.
If setting an h5ad
-formatted HDF5 backing file filename
,
data remains on the disk but is automatically loaded into memory if needed.
See this blog post for more details.
Usage
AnnData(
X = NULL,
obs = NULL,
var = NULL,
uns = NULL,
obsm = NULL,
varm = NULL,
layers = NULL,
raw = NULL,
dtype = "float32",
shape = NULL,
filename = NULL,
filemode = NULL,
obsp = NULL,
varp = NULL
)
Arguments
X |
A #observations × #variables data matrix. A view of the data is used if the data type matches, otherwise, a copy is made. |
obs |
Key-indexed one-dimensional observations annotation of length #observations. |
var |
Key-indexed one-dimensional variables annotation of length #variables. |
uns |
Key-indexed unstructured annotation. |
obsm |
Key-indexed multi-dimensional observations annotation of length #observations. If passing a |
varm |
Key-indexed multi-dimensional variables annotation of length #variables. If passing a |
layers |
Key-indexed multi-dimensional arrays aligned to dimensions of |
raw |
Store raw version of |
dtype |
Data type used for storage. |
shape |
Shape list (#observations, #variables). Can only be provided if |
filename |
Name of backing file. See h5py.File. |
filemode |
Open mode of backing file. See h5py.File. |
obsp |
Pairwise annotation of observations, a mutable mapping with array-like values. |
varp |
Pairwise annotation of observations, a mutable mapping with array-like values. |
Details
AnnData
stores observations (samples) of variables/features in the rows of a matrix.
This is the convention of the modern classics of statistic and machine learning,
the convention of dataframes both in R and Python and the established statistics
and machine learning packages in Python (statsmodels, scikit-learn).
Single dimensional annotations of the observation and variables are stored
in the obs
and var
attributes as data frames.
This is intended for metrics calculated over their axes.
Multi-dimensional annotations are stored in obsm
and varm
,
which are aligned to the objects observation and variable dimensions respectively.
Square matrices representing graphs are stored in obsp
and varp
,
with both of their own dimensions aligned to their associated axis.
Additional measurements across both observations and variables are stored in
layers
.
Indexing into an AnnData object can be performed by relative position with numeric indices, or by labels. To avoid ambiguity with numeric indexing into observations or variables, indexes of the AnnData object are converted to strings by the constructor.
Subsetting an AnnData object by indexing into it will also subset its elements
according to the dimensions they were aligned to.
This means an operation like adata[list_of_obs, ]
will also subset obs
,
obsm
, and layers
.
Subsetting an AnnData object returns a view into the original object, meaning very little additional memory is used upon subsetting. This is achieved lazily, meaning that the constituent arrays are subset on access. Copying a view causes an equivalent “real” AnnData object to be generated. Attempting to modify a view (at any attribute except X) is handled in a copy-on-modify manner, meaning the object is initialized in place. Here's an example
batch1 <- adata[adata$obs["batch"] == "batch1", ] batch1$obs["value"] = 0 # This makes batch1 a “real” AnnData object
At the end of this snippet: adata
was not modified,
and batch1
is its own AnnData object with its own data.
Similar to Bioconductor’s ExpressionSet
and scipy.sparse
matrices,
subsetting an AnnData object retains the dimensionality of its constituent arrays.
Therefore, unlike with the classes exposed by pandas
, numpy
,
and xarray
, there is no concept of a one dimensional AnnData object.
AnnDatas always have two inherent dimensions, obs
and var
.
Additionally, maintaining the dimensionality of the AnnData object allows for
consistent handling of scipy.sparse
matrices and numpy
arrays.
Active bindings
X
Data matrix of shape
n_obs
×n_vars
.filename
Name of the backing file.
Change to backing mode by setting the filename of a
.h5ad
file.Setting the filename writes the stored data to disk.
Setting the filename when the filename was previously another name moves the backing file from the previous file to the new file. If you want to copy the previous file, use
copy(filename='new_filename')
.
layers
A list-like object with values of the same dimensions as
X
. Layers in AnnData are inspired by loompy's layers.Overwrite the layers:
adata$layers <- list(spliced = spliced, unspliced = unspliced)
Return the layer named
"unspliced"
:adata$layers["unspliced"]
Create or replace the
"spliced"
layer:adata$layers["spliced"] = example_matrix
Assign the 10th column of layer
"spliced"
to the variable a:a <- adata$layers["spliced"][, 10]
Delete the
"spliced"
:adata$layers["spliced"] <- NULL
Return layers' names:
names(adata$layers)
T
Transpose whole object.
Data matrix is transposed, observations and variables are interchanged.
Ignores
.raw
.is_view
TRUE
if object is view of another AnnData object,FALSE
otherwise.isbacked
TRUE
if object is backed on disk,FALSE
otherwise.n_obs
Number of observations.
obs
One-dimensional annotation of observations (data.frame).
obs_names
Names of observations.
obsm
Multi-dimensional annotation of observations (matrix).
Stores for each key a two or higher-dimensional matrix with
n_obs
rows.obsp
Pairwise annotation of observations, a mutable mapping with array-like values.
Stores for each key a two or higher-dimensional matrix whose first two dimensions are of length
n_obs
.n_vars
Number of variables.
var
One-dimensional annotation of variables (data.frame).
var_names
Names of variables.
varm
Multi-dimensional annotation of variables (matrix).
Stores for each key a two or higher-dimensional matrix with
n_vars
rows.varp
Pairwise annotation of variables, a mutable mapping with array-like values.
Stores for each key a two or higher-dimensional matrix whose first two dimensions are of length
n_vars
.shape
Shape of data matrix (
n_obs
,n_vars
).uns
Unstructured annotation (ordered dictionary).
raw
Store raw version of
X
andvar
as$raw$X
and$raw$var
.The
raw
attribute is initialized with the current content of an object by setting:adata$raw = adata
Its content can be deleted:
adata$raw <- NULL
Upon slicing an AnnData object along the obs (row) axis,
raw
is also sliced. Slicing an AnnData object along the vars (columns) axis leavesraw
unaffected. Note that you can call:adata$raw[, 'orig_variable_name']$X
to retrieve the data associated with a variable that might have been filtered out or "compressed away" in
X'.
Methods
Public methods
Method new()
Create a new AnnData object
Usage
AnnDataR6$new(obj)
Arguments
obj
A Python anndata object
Examples
\dontrun{ # use AnnData() instead of AnnDataR6$new() ad <- AnnData( X = matrix(c(0, 1, 2, 3), nrow = 2), obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")), var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")) ) }
Method obs_keys()
List keys of observation annotation obs
.
Usage
AnnDataR6$obs_keys()
Examples
\dontrun{ ad <- AnnData( X = matrix(c(0, 1, 2, 3), nrow = 2), obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")) ) ad$obs_keys() }
Method obs_names_make_unique()
Makes the index unique by appending a number string to each duplicate index element: 1, 2, etc.
If a tentative name created by the algorithm already exists in the index, it tries the next integer in the sequence.
The first occurrence of a non-unique value is ignored.
Usage
AnnDataR6$obs_names_make_unique(join = "-")
Arguments
join
The connecting string between name and integer (default:
"-"
).
Examples
\dontrun{ ad <- AnnData( X = matrix(rep(1, 6), nrow = 3), obs = data.frame(field = c(1, 2, 3)) ) ad$obs_names <- c("a", "a", "b") ad$obs_names_make_unique() ad$obs_names }
Method obsm_keys()
List keys of observation annotation obsm
.
Usage
AnnDataR6$obsm_keys()
Examples
\dontrun{ ad <- AnnData( X = matrix(c(0, 1, 2, 3), nrow = 2), obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")), obsm = list( ones = matrix(rep(1L, 10), nrow = 2), rand = matrix(rnorm(6), nrow = 2), zeros = matrix(rep(0L, 10), nrow = 2) ) ) ad$obs_keys() }
Method var_keys()
List keys of variable annotation var
.
Usage
AnnDataR6$var_keys()
Examples
\dontrun{ ad <- AnnData( X = matrix(c(0, 1, 2, 3), nrow = 2), var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")) ) ad$var_keys() }
Method var_names_make_unique()
Makes the index unique by appending a number string to each duplicate index element: 1, 2, etc.
If a tentative name created by the algorithm already exists in the index, it tries the next integer in the sequence.
The first occurrence of a non-unique value is ignored.
Usage
AnnDataR6$var_names_make_unique(join = "-")
Arguments
join
The connecting string between name and integer (default:
"-"
).
Examples
\dontrun{ ad <- AnnData( X = matrix(rep(1, 6), nrow = 2), var = data.frame(field = c(1, 2, 3)) ) ad$var_names <- c("a", "a", "b") ad$var_names_make_unique() ad$var_names }
Method varm_keys()
List keys of variable annotation varm
.
Usage
AnnDataR6$varm_keys()
Examples
\dontrun{ ad <- AnnData( X = matrix(c(0, 1, 2, 3), nrow = 2), var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")), varm = list( ones = matrix(rep(1L, 10), nrow = 2), rand = matrix(rnorm(6), nrow = 2), zeros = matrix(rep(0L, 10), nrow = 2) ) ) ad$varm_keys() }
Method uns_keys()
List keys of unstructured annotation uns
.
Usage
AnnDataR6$uns_keys()
Examples
\dontrun{ ad <- AnnData( X = matrix(c(0, 1, 2, 3), nrow = 2), obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")), var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")), uns = list(a = 1, b = 2, c = list(c.a = 3, c.b = 4)) ) }
Method chunk_X()
Return a chunk of the data matrix X
with random or specified indices.
Usage
AnnDataR6$chunk_X(select = 1000L, replace = TRUE)
Arguments
select
Depending on the values:
1 integer: A random chunk with select rows will be returned.
multiple integers: A chunk with these indices will be returned.
replace
if
select
is an integer thenTRUE
means random sampling of indices with replacement,FALSE
without replacement.
Examples
\dontrun{ ad <- AnnData( X = matrix(runif(10000), nrow = 50) ) ad$chunk_X(select = 10L) # 10 random samples ad$chunk_X(select = 1:3) # first 3 samples }
Method chunked_X()
Return an iterator over the rows of the data matrix X.
Usage
AnnDataR6$chunked_X(chunk_size = NULL)
Arguments
chunk_size
Row size of a single chunk.
Examples
\dontrun{ ad <- AnnData( X = matrix(runif(10000), nrow = 50) ) ad$chunked_X(10) }
Method concatenate()
Concatenate along the observations axis.
Usage
AnnDataR6$concatenate(...)
Arguments
...
Deprecated
Method copy()
Full copy, optionally on disk.
Usage
AnnDataR6$copy(filename = NULL)
Arguments
filename
Path to filename (default:
NULL
).
Examples
\dontrun{ ad <- AnnData( X = matrix(c(0, 1, 2, 3), nrow = 2) ) ad$copy() ad$copy("file.h5ad") }
Method rename_categories()
Rename categories of annotation key
in obs
, var
, and uns
.
Only supports passing a list/array-like categories
argument.
Besides calling self.obs[key].cat.categories = categories
–
similar for var
- this also renames categories in unstructured
annotation that uses the categorical annotation key
.
Usage
AnnDataR6$rename_categories(key, categories)
Arguments
key
Key for observations or variables annotation.
categories
New categories, the same number as the old categories.
Examples
\dontrun{ ad <- AnnData( X = matrix(c(0, 1, 2, 3), nrow = 2), obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")) ) ad$rename_categories("group", c(a = "A", b = "B")) # ?? }
Method strings_to_categoricals()
Transform string annotations to categoricals.
Only affects string annotations that lead to less categories than the total number of observations.
Usage
AnnDataR6$strings_to_categoricals(df = NULL)
Arguments
df
If
df
isNULL
, modifies bothobs
andvar
, otherwise modifiesdf
inplace.
Examples
\dontrun{ ad <- AnnData( X = matrix(c(0, 1, 2, 3), nrow = 2), obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")), var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")), ) ad$strings_to_categoricals() # ?? }
Method to_df()
Generate shallow data frame.
The data matrix X
is returned as data frame, where obs_names
are the rownames, and var_names
the columns names.
No annotations are maintained in the returned object.
The data matrix is densified in case it is sparse.
Usage
AnnDataR6$to_df(layer = NULL)
Arguments
layer
Key for layers
Examples
\dontrun{ ad <- AnnData( X = matrix(c(0, 1, 2, 3), nrow = 2), obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")), var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")), layers = list( spliced = matrix(c(4, 5, 6, 7), nrow = 2), unspliced = matrix(c(8, 9, 10, 11), nrow = 2) ) ) ad$to_df() ad$to_df("unspliced") }
Method transpose()
transpose Transpose whole object.
Data matrix is transposed, observations and variables are interchanged.
Ignores .raw
.
Usage
AnnDataR6$transpose()
Examples
\dontrun{ ad <- AnnData( X = matrix(c(0, 1, 2, 3), nrow = 2), obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")), var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")) ) ad$transpose() }
Method write_csvs()
Write annotation to .csv files.
It is not possible to recover the full AnnData from these files. Use write_h5ad()
for this.
Usage
AnnDataR6$write_csvs(dirname, skip_data = TRUE, sep = ",")
Arguments
dirname
Name of the directory to which to export.
skip_data
Skip the data matrix
X
.sep
Separator for the data
anndata
An
AnnData()
object
Examples
\dontrun{ ad <- AnnData( X = matrix(c(0, 1, 2, 3), nrow = 2), obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")), var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")), varm = list( ones = matrix(rep(1L, 10), nrow = 2), rand = matrix(rnorm(6), nrow = 2), zeros = matrix(rep(0L, 10), nrow = 2) ), uns = list(a = 1, b = 2, c = list(c.a = 3, c.b = 4)) ) ad$to_write_csvs("output") unlink("output", recursive = TRUE) }
Method write_h5ad()
Write .h5ad-formatted hdf5 file.
Generally, if you have sparse data that are stored as a dense matrix, you can dramatically improve performance and reduce disk space by converting to a csr_matrix:
Usage
AnnDataR6$write_h5ad( filename, compression = NULL, compression_opts = NULL, as_dense = list() )
Arguments
filename
Filename of data file. Defaults to backing file.
compression
See the h5py filter pipeline. Options are
"gzip"
,"lzf"
orNULL
.compression_opts
See the h5py filter pipeline.
as_dense
Sparse in AnnData object to write as dense. Currently only supports
"X"
and"raw/X"
.anndata
An
AnnData()
object
Examples
\dontrun{ ad <- AnnData( X = matrix(c(0, 1, 2, 3), nrow = 2), obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")), var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")), varm = list( ones = matrix(rep(1L, 10), nrow = 2), rand = matrix(rnorm(6), nrow = 2), zeros = matrix(rep(0L, 10), nrow = 2) ), uns = list(a = 1, b = 2, c = list(c.a = 3, c.b = 4)) ) ad$write_h5ad("output.h5ad") file.remove("output.h5ad") }
Method write_loom()
Write .loom-formatted hdf5 file.
Usage
AnnDataR6$write_loom(filename, write_obsm_varm = FALSE)
Arguments
filename
The filename.
write_obsm_varm
Whether or not to also write the varm and obsm.
anndata
An
AnnData()
object
Examples
\dontrun{ ad <- AnnData( X = matrix(c(0, 1, 2, 3), nrow = 2), obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")), var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")), varm = list( ones = matrix(rep(1L, 10), nrow = 2), rand = matrix(rnorm(6), nrow = 2), zeros = matrix(rep(0L, 10), nrow = 2) ), uns = list(a = 1, b = 2, c = list(c.a = 3, c.b = 4)) ) ad$write_loom("output.loom") file.remove("output.loom") }
Method print()
Print AnnData object
Usage
AnnDataR6$print(...)
Arguments
...
optional arguments to print method.
Examples
\dontrun{ ad <- AnnData( X = matrix(c(0, 1, 2, 3), nrow = 2), obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")), var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")), layers = list( spliced = matrix(c(4, 5, 6, 7), nrow = 2), unspliced = matrix(c(8, 9, 10, 11), nrow = 2) ), obsm = list( ones = matrix(rep(1L, 10), nrow = 2), rand = matrix(rnorm(6), nrow = 2), zeros = matrix(rep(0L, 10), nrow = 2) ), varm = list( ones = matrix(rep(1L, 10), nrow = 2), rand = matrix(rnorm(6), nrow = 2), zeros = matrix(rep(0L, 10), nrow = 2) ), uns = list(a = 1, b = 2, c = list(c.a = 3, c.b = 4)) ) ad$print() print(ad) }
Method .set_py_object()
Set internal Python object
Usage
AnnDataR6$.set_py_object(obj)
Arguments
obj
A python anndata object
Method .get_py_object()
Get internal Python object
Usage
AnnDataR6$.get_py_object()
See Also
read_h5ad()
read_csv()
read_excel()
read_hdf()
read_loom()
read_mtx()
read_text()
read_umi_tools()
write_h5ad()
write_csvs()
write_loom()
Examples
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2),
obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")),
var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")),
layers = list(
spliced = matrix(c(4, 5, 6, 7), nrow = 2),
unspliced = matrix(c(8, 9, 10, 11), nrow = 2)
),
obsm = list(
ones = matrix(rep(1L, 10), nrow = 2),
rand = matrix(rnorm(6), nrow = 2),
zeros = matrix(rep(0L, 10), nrow = 2)
),
varm = list(
ones = matrix(rep(1L, 10), nrow = 2),
rand = matrix(rnorm(6), nrow = 2),
zeros = matrix(rep(0L, 10), nrow = 2)
),
uns = list(a = 1, b = 2, c = list(c.a = 3, c.b = 4))
)
value <- matrix(c(1,2,3,4), nrow = 2)
ad$X <- value
ad$X
ad$layers
ad$layers["spliced"]
ad$layers["test"] <- value
ad$layers
ad$to_df()
ad$uns
as.matrix(ad)
as.matrix(ad, layer = "unspliced")
dim(ad)
rownames(ad)
colnames(ad)
## End(Not run)
## ------------------------------------------------
## Method `AnnDataR6$new`
## ------------------------------------------------
## Not run:
# use AnnData() instead of AnnDataR6$new()
ad <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2),
obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")),
var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2"))
)
## End(Not run)
## ------------------------------------------------
## Method `AnnDataR6$obs_keys`
## ------------------------------------------------
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2),
obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2"))
)
ad$obs_keys()
## End(Not run)
## ------------------------------------------------
## Method `AnnDataR6$obs_names_make_unique`
## ------------------------------------------------
## Not run:
ad <- AnnData(
X = matrix(rep(1, 6), nrow = 3),
obs = data.frame(field = c(1, 2, 3))
)
ad$obs_names <- c("a", "a", "b")
ad$obs_names_make_unique()
ad$obs_names
## End(Not run)
## ------------------------------------------------
## Method `AnnDataR6$obsm_keys`
## ------------------------------------------------
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2),
obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")),
obsm = list(
ones = matrix(rep(1L, 10), nrow = 2),
rand = matrix(rnorm(6), nrow = 2),
zeros = matrix(rep(0L, 10), nrow = 2)
)
)
ad$obs_keys()
## End(Not run)
## ------------------------------------------------
## Method `AnnDataR6$var_keys`
## ------------------------------------------------
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2),
var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2"))
)
ad$var_keys()
## End(Not run)
## ------------------------------------------------
## Method `AnnDataR6$var_names_make_unique`
## ------------------------------------------------
## Not run:
ad <- AnnData(
X = matrix(rep(1, 6), nrow = 2),
var = data.frame(field = c(1, 2, 3))
)
ad$var_names <- c("a", "a", "b")
ad$var_names_make_unique()
ad$var_names
## End(Not run)
## ------------------------------------------------
## Method `AnnDataR6$varm_keys`
## ------------------------------------------------
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2),
var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")),
varm = list(
ones = matrix(rep(1L, 10), nrow = 2),
rand = matrix(rnorm(6), nrow = 2),
zeros = matrix(rep(0L, 10), nrow = 2)
)
)
ad$varm_keys()
## End(Not run)
## ------------------------------------------------
## Method `AnnDataR6$uns_keys`
## ------------------------------------------------
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2),
obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")),
var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")),
uns = list(a = 1, b = 2, c = list(c.a = 3, c.b = 4))
)
## End(Not run)
## ------------------------------------------------
## Method `AnnDataR6$chunk_X`
## ------------------------------------------------
## Not run:
ad <- AnnData(
X = matrix(runif(10000), nrow = 50)
)
ad$chunk_X(select = 10L) # 10 random samples
ad$chunk_X(select = 1:3) # first 3 samples
## End(Not run)
## ------------------------------------------------
## Method `AnnDataR6$chunked_X`
## ------------------------------------------------
## Not run:
ad <- AnnData(
X = matrix(runif(10000), nrow = 50)
)
ad$chunked_X(10)
## End(Not run)
## ------------------------------------------------
## Method `AnnDataR6$copy`
## ------------------------------------------------
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2)
)
ad$copy()
ad$copy("file.h5ad")
## End(Not run)
## ------------------------------------------------
## Method `AnnDataR6$rename_categories`
## ------------------------------------------------
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2),
obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2"))
)
ad$rename_categories("group", c(a = "A", b = "B")) # ??
## End(Not run)
## ------------------------------------------------
## Method `AnnDataR6$strings_to_categoricals`
## ------------------------------------------------
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2),
obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")),
var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")),
)
ad$strings_to_categoricals() # ??
## End(Not run)
## ------------------------------------------------
## Method `AnnDataR6$to_df`
## ------------------------------------------------
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2),
obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")),
var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")),
layers = list(
spliced = matrix(c(4, 5, 6, 7), nrow = 2),
unspliced = matrix(c(8, 9, 10, 11), nrow = 2)
)
)
ad$to_df()
ad$to_df("unspliced")
## End(Not run)
## ------------------------------------------------
## Method `AnnDataR6$transpose`
## ------------------------------------------------
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2),
obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")),
var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2"))
)
ad$transpose()
## End(Not run)
## ------------------------------------------------
## Method `AnnDataR6$write_csvs`
## ------------------------------------------------
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2),
obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")),
var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")),
varm = list(
ones = matrix(rep(1L, 10), nrow = 2),
rand = matrix(rnorm(6), nrow = 2),
zeros = matrix(rep(0L, 10), nrow = 2)
),
uns = list(a = 1, b = 2, c = list(c.a = 3, c.b = 4))
)
ad$to_write_csvs("output")
unlink("output", recursive = TRUE)
## End(Not run)
## ------------------------------------------------
## Method `AnnDataR6$write_h5ad`
## ------------------------------------------------
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2),
obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")),
var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")),
varm = list(
ones = matrix(rep(1L, 10), nrow = 2),
rand = matrix(rnorm(6), nrow = 2),
zeros = matrix(rep(0L, 10), nrow = 2)
),
uns = list(a = 1, b = 2, c = list(c.a = 3, c.b = 4))
)
ad$write_h5ad("output.h5ad")
file.remove("output.h5ad")
## End(Not run)
## ------------------------------------------------
## Method `AnnDataR6$write_loom`
## ------------------------------------------------
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2),
obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")),
var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")),
varm = list(
ones = matrix(rep(1L, 10), nrow = 2),
rand = matrix(rnorm(6), nrow = 2),
zeros = matrix(rep(0L, 10), nrow = 2)
),
uns = list(a = 1, b = 2, c = list(c.a = 3, c.b = 4))
)
ad$write_loom("output.loom")
file.remove("output.loom")
## End(Not run)
## ------------------------------------------------
## Method `AnnDataR6$print`
## ------------------------------------------------
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2),
obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")),
var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")),
layers = list(
spliced = matrix(c(4, 5, 6, 7), nrow = 2),
unspliced = matrix(c(8, 9, 10, 11), nrow = 2)
),
obsm = list(
ones = matrix(rep(1L, 10), nrow = 2),
rand = matrix(rnorm(6), nrow = 2),
zeros = matrix(rep(0L, 10), nrow = 2)
),
varm = list(
ones = matrix(rep(1L, 10), nrow = 2),
rand = matrix(rnorm(6), nrow = 2),
zeros = matrix(rep(0L, 10), nrow = 2)
),
uns = list(a = 1, b = 2, c = list(c.a = 3, c.b = 4))
)
ad$print()
print(ad)
## End(Not run)