cropImageTrainGenerator {animl} | R Documentation |
Tensorflow data generator for training that crops images to bounding box.
Description
Creates an image data generator that crops images based on bounding box coordinates and returnes an image/label pair.
Usage
cropImageTrainGenerator(
files,
boxes,
label,
classes,
resize_height = 456,
resize_width = 456,
standardize = FALSE,
augmentation_color = FALSE,
augmentation_geometry = FALSE,
shuffle = FALSE,
cache = FALSE,
cache_dir = NULL,
return_iterator = FALSE,
batch = 32
)
Arguments
files |
a vector of file names |
boxes |
a data frame or matrix of bounding box coordinates in the format left, top, width, height. |
label |
a vector of labels |
classes |
a vector of all classes for the active model |
resize_height |
the height the cropped image will be resized to. |
resize_width |
the width the cropped image will be resized to. |
standardize |
standardize the image to the range 0 to 1, TRUE or FALSE. |
augmentation_color |
use data augmentation to change the color, TRUE or FALSE. |
augmentation_geometry |
use data augmentation to change the geometry of the images, TRUE or FALSE. |
shuffle |
return data pairas in random order, TRUE or FALSE. |
cache |
use caching to reduce reading from disk, TRUE or FALSE. |
cache_dir |
directory used for caching, if none provided chaching will be done in memory. |
return_iterator |
Should an iterator be returned? If RALSE a tfdataset will be returned. |
batch |
the batch size for the image generator. |
Value
A Tensorflow image data generator.
Examples
## Not run:
dataset <- cropImageTrainGenerator(images, standardize = FALSE, batch = batch)
## End(Not run)