global_width_CI {aniSNA} | R Documentation |
To obtain width of confidence intervals for global network metrics using bootstrapped versions at each level of sub-sampling
Description
To obtain width of confidence intervals for global network metrics using bootstrapped versions at each level of sub-sampling
Usage
global_width_CI(
network,
n_versions = 100,
seed = 12345,
n.iter = 10,
network_metrics_functions_list = c(edge_density = function(x) igraph::edge_density(x),
diameter = function(x) igraph::diameter(x, weights = NA), transitivity = function(x)
igraph::transitivity(x)),
scaled_metrics = NULL,
CI_size = 0.95
)
Arguments
network |
An igraph object consisting of observed network. |
n_versions |
Number of bootstrapped versions to be used. (default = 100) |
seed |
seed number |
n.iter |
Number of iterations at each level. (default = 10) |
network_metrics_functions_list |
A list consisting of function definitions of the global network metrics that the user wants to evaluate. Each element in the list should have an assigned name. Default = c("edge_density" = function(x) igraph::edge_density(x), "diameter" = function(x) igraph::diameter(x, weights = NA), "transitivity" = function(x) igraph::transitivity(x)) |
scaled_metrics |
Optional. A vector subset of the names of functions in network_metrics_functions_list with the metrics that should be scaled. For example scaled_metrics = c("diameter") |
CI_size |
Size of confidence interval. Default is 0.95 that generates a 95% confidence interval. |
Value
A matrix of class Width_CI_matrix containing width of Confidence Intervals where each row corresponds to the sub-sample size and columns correspond to the chosen network metric. Sub-sample size values occur in multiples of 10 and range from 10 to maximum multiple of 10 less than or equal to the number of nodes in the network.
Examples
data(elk_network_2010)
width_CI_elk <- global_width_CI(elk_network_2010, n_versions = 100)
plot(width_CI_elk)