norm_test_fun {analyzer} | R Documentation |
Checks for Normality Assumption
Description
norm_test_fun
checks for the normality assumption
Usage
norm_test_fun(x, method = "anderson", pval = 0.05, xn = "x", bin = FALSE)
Arguments
x |
a numeric vector |
method |
|
pval |
significance level for normality tests. Default is 0.05 |
xn |
vector name |
bin |
TRUE if only TRUE/FALSE is required |
Details
This function checks for normality assumption using
shapiro, Kolmogorov-Smirnov or Anderson Darling test.
If the parameter bin
is TRUE, then TRUE
is returned
if vector is normal, otherwise FALSE.
The significance level is passed through the parameter
pval
Value
Logical TRUE/FALSE based on the performed test and pval
.
If the vector follows the normality assumption, then TRUE is returned
See Also
anderson.test
for Anderson Darling test
Examples
norm_test_fun(mtcars$mpg)
norm_test_fun(mtcars$mpg, method = "shapiro",
pval = 0.05, xn = "mpg", bin = TRUE)
[Package analyzer version 1.0.1 Index]