alluvial {alluvial} | R Documentation |
Alluvial diagram
Description
Drawing alluvial diagrams, also known as parallel set plots.
Usage
alluvial(..., freq, col = "gray", border = 0, layer, hide = FALSE,
alpha = 0.5, gap.width = 0.05, xw = 0.1, cw = 0.1, blocks = TRUE,
ordering = NULL, axis_labels = NULL, cex = par("cex"),
cex.axis = par("cex.axis"))
Arguments
... |
vectors or data frames, all for the same number of observations |
freq |
numeric, vector of frequencies of the same length as the number of observations |
col |
vector of colors of the stripes |
border |
vector of border colors for the stripes |
layer |
numeric, order of drawing of the stripes |
hide |
logical, should particular stripe be plotted |
alpha |
numeric, vector of transparency of the stripes |
gap.width |
numeric, relative width of inter-category gaps |
xw |
numeric, the distance from the set axis to the control points of the xspline |
cw |
numeric, width of the category axis |
blocks |
logical, whether to use blocks to tie the flows together at each category, versus contiguous ribbons (also admits character value "bookends") |
ordering |
list of numeric vectors allowing to reorder the alluvia on each axis separately, see Examples |
axis_labels |
character, labels of the axes, defaults to variable names in the data |
cex , cex.axis |
numeric, scaling of fonts of category labels and axis labels respectively. See |
Value
Invisibly a list with elements:
endpoints |
A list of matrices of y-coordinates of endpoints of the alluvia. x-coordinates are consecutive natural numbers. |
Note
Please mind that the API is planned to change to be more compatible with dplyr verbs.
Examples
# Titanic data
tit <- as.data.frame(Titanic)
# 2d
tit2d <- aggregate( Freq ~ Class + Survived, data=tit, sum)
alluvial( tit2d[,1:2], freq=tit2d$Freq, xw=0.0, alpha=0.8,
gap.width=0.1, col= "steelblue", border="white",
layer = tit2d$Survived != "Yes" )
alluvial( tit2d[,1:2], freq=tit2d$Freq,
hide=tit2d$Freq < 150,
xw=0.0, alpha=0.8,
gap.width=0.1, col= "steelblue", border="white",
layer = tit2d$Survived != "Yes" )
# 3d
tit3d <- aggregate( Freq ~ Class + Sex + Survived, data=tit, sum)
alluvial(tit3d[,1:3], freq=tit3d$Freq, alpha=1, xw=0.2,
col=ifelse( tit3d$Survived == "No", "red", "gray"),
layer = tit3d$Sex != "Female",
border="white")
# 4d
alluvial( tit[,1:4], freq=tit$Freq, border=NA,
hide = tit$Freq < quantile(tit$Freq, .50),
col=ifelse( tit$Class == "3rd" & tit$Sex == "Male", "red", "gray") )
# 3d example with custom ordering
# Reorder "Sex" axis according to survival status
ord <- list(NULL, with(tit3d, order(Sex, Survived)), NULL)
alluvial(tit3d[,1:3], freq=tit3d$Freq, alpha=1, xw=0.2,
col=ifelse( tit3d$Survived == "No", "red", "gray"),
layer = tit3d$Sex != "Female",
border="white", ordering=ord)
# Possible blocks options
for (blocks in c(TRUE, FALSE, "bookends")) {
# Elaborate alluvial diagram from main examples file
alluvial( tit[, 1:4], freq = tit$Freq, border = NA,
hide = tit$Freq < quantile(tit$Freq, .50),
col = ifelse( tit$Class == "3rd" & tit$Sex == "Male",
"red", "gray" ),
blocks = blocks )
}
# Data returned
x <- alluvial( tit2d[,1:2], freq=tit2d$Freq, xw=0.0, alpha=0.8,
gap.width=0.1, col= "steelblue", border="white",
layer = tit2d$Survived != "Yes" )
points( rep(1, 16), x$endpoints[[1]], col="green")
points( rep(2, 16), x$endpoints[[2]], col="blue")