get_coder_metrics {aifeducation} | R Documentation |
Calculate reliability measures based on content analysis
Description
This function calculates different reliability measures which are based on the empirical research method of content analysis.
Usage
get_coder_metrics(
true_values = NULL,
predicted_values = NULL,
return_names_only = FALSE
)
Arguments
true_values |
|
predicted_values |
|
return_names_only |
|
Value
If return_names_only=FALSE
returns a vector
with the following reliability measures:
#'
iota_index: Iota Index from the Iota Reliability Concept Version 2.
min_iota2: Minimal Iota from Iota Reliability Concept Version 2.
avg_iota2: Average Iota from Iota Reliability Concept Version 2.
max_iota2: Maximum Iota from Iota Reliability Concept Version 2.
min_alpha: Minmal Alpha Reliability from Iota Reliability Concept Version 2.
avg_alpha: Average Alpha Reliability from Iota Reliability Concept Version 2.
max_alpha: Maximum Alpha Reliability from Iota Reliability Concept Version 2.
static_iota_index: Static Iota Index from Iota Reliability Concept Version 2.
dynamic_iota_index: Dynamic Iota Index Iota Reliability Concept Version 2.
kalpha_nominal: Krippendorff's Alpha for nominal variables.
kalpha_ordinal: Krippendorff's Alpha for ordinal variables.
kendall: Kendall's coefficient of concordance W.
kappa2_unweighted: Cohen's Kappa unweighted.
kappa2_equal_weighted: Weighted Cohen's Kappa with equal weights.
kappa2_squared_weighted: Weighted Cohen's Kappa with squared weights.
kappa_fleiss: Fleiss' Kappa for multiple raters without exact estimation.
percentage_agreement: Percentage Agreement.
balanced_accuracy: Average accuracy within each class.
gwet_ac: Gwet's AC1/AC2 agreement coefficient.
If return_names_only=TRUE
returns only the names of the vector elements.
See Also
Other Auxiliary Functions:
array_to_matrix()
,
calc_standard_classification_measures()
,
check_embedding_models()
,
clean_pytorch_log_transformers()
,
create_iota2_mean_object()
,
create_synthetic_units()
,
generate_id()
,
get_folds()
,
get_n_chunks()
,
get_stratified_train_test_split()
,
get_synthetic_cases()
,
get_train_test_split()
,
is.null_or_na()
,
matrix_to_array_c()
,
split_labeled_unlabeled()
,
summarize_tracked_sustainability()
,
to_categorical_c()