predict.tune.ahazpen {ahaz} | R Documentation |
Prediction methods for tune.ahazpen
Description
Compute regression coefficient estimates, linear predictor, cumulative hazard function, or integrated martingale residuals for a fitted and tuned penalized semiparametric additive hazards model.
Usage
## S3 method for class 'tune.ahazpen'
predict(object, newX, lambda="lambda.min", ...)
## S3 method for class 'tune.ahazpen'
coef(object, ...)
Arguments
object |
The result of an |
newX |
New matrix of covariates at which to do
predictions. Required for some types of predictions, see |
lambda |
Value of lambda at which predictions are
to be made. Required for some types of predictions, see
|
... |
Additional arguments to be passed to
|
Details
See the details in predict.ahazpen
for information on
the available types of predictions.
Value
The obejct returned depends on the details in the argument ...
passed
to predict.ahazpen
.
See Also
predict.ahazpen
, ahazpen
, print.ahazpen
,
plot.ahazpen
, predict.ahaz
, plot.cumahaz
.
Examples
data(sorlie)
set.seed(10101)
# Break ties
time <- sorlie$time+runif(nrow(sorlie))*1e-2
# Survival data + covariates
surv <- Surv(time,sorlie$status)
X <- as.matrix(sorlie[,3:ncol(sorlie)])
# Fit additive hazards regression model w/lasso penalty
cv.fit <- tune.ahazpen(surv, X, dfmax=100, tune="cv")
# Predict coefficients at cv.fit$lambda.min
coef(cv.fit)
# Predict risk score at cv.fit$lambda.min
predict(cv.fit,newX=X,type="lp")