predict.ahazpen {ahaz} | R Documentation |
Prediction methods for ahazpen
Description
Compute regression coefficient estimates, linear predictor, cumulative hazard function, or integrated martingale residuals for a fitted penalized semiparametric additive hazards model.
Usage
## S3 method for class 'ahazpen'
predict(object, newX, type=c("coef","lp","residuals","cumhaz"),
lambda=NULL, ...)
## S3 method for class 'ahazpen'
coef(object, ...)
Arguments
object |
The result of an |
newX |
New matrix of covariates at which to do
predictions. |
lambda |
Value of lambda for at which predictions are
to be made. This argument is required for |
type |
The type of prediction. Options are the regression coefficients
(" |
... |
For future methods. |
Details
See the details in predict.ahaz
for information on
the different types of predictions.
Value
For type="coef"
and type="lp"
, a
matrix of regression coefficients, respectively linear predictions for
each value of the penalty parameter.
For type="residuals"
, a matrix of (integrated) martingale residuals
associated with the nonzero penalized regression coefficients for a
regularization parameter equal to lambda
.
For type="cumhaz"
, an object with S3 class "cumahaz"
based on the regression coefficients estimated for a
regularization parameter equal to lambda
, the object containing:
time |
Jump times for the cumulative hazard estimate. |
cumhaz |
The cumulative hazard estimate. |
event |
Status at jump times (1 corresponds to death, 0 corresponds to entry/exit). |
See Also
ahazpen
, print.ahazpen
,
plot.ahazpen
, predict.ahaz
, plot.cumahaz
.
Examples
data(sorlie)
set.seed(10101)
# Break ties
time <- sorlie$time+runif(nrow(sorlie))*1e-2
# Survival data + covariates
surv <- Surv(time,sorlie$status)
X <- as.matrix(sorlie[,3:ncol(sorlie)])
# Fit additive hazards regression model w/lasso penalty
fit <- ahazpen(surv, X, dfmax=100)
# Coefficients
beta <- predict(fit,X,lambda=0.08,type="coef")
barplot(as.numeric(beta))
# Linear predictions
linpred <- predict(fit,X,lambda=0.1,type="lp")
riskgrp <- factor(linpred < median(linpred))
plot(survfit(surv~riskgrp))
# Residuals
resid <- predict(fit, X, lambda=0.1, type = "residuals")
par(mfrow = c(1,2))
hist(resid[,1],main=colnames(resid)[1])
hist(resid[,2],main=colnames(resid)[2])
# Cumulative hazard
cumhaz <- predict(fit,X,lambda=0.1,type="cumhaz")
plot(cumhaz)