predict.ahaz {ahaz} | R Documentation |
Prediction methods for ahaz
Description
Compute regression coefficients, linear predictor, cumulative hazard function, or integrated martingale residuals for a fitted semiparametric additive hazards model.
Usage
## S3 method for class 'ahaz'
predict(object, newX, type=c("coef", "lp",
"residuals", "cumhaz"), beta=NULL, ...)
## S3 method for class 'ahaz'
coef(object, ...)
## S3 method for class 'ahaz'
vcov(object, ...)
## S3 method for class 'ahaz'
residuals(object, ...)
Arguments
object |
The result of an |
newX |
Optional new matrix of covariates at which to do
predictions. Currently only supported for |
type |
Type of prediction. Options are the regression coefficients
(" |
beta |
Optional vector of regression coefficients. If unspecified,
the regression coefficients derived from |
... |
For future methods. |
Details
The Breslow estimator of the baseline cumulative hazard is described in Lin & Ying (1994).
The regression coefficients \beta_0
in the semiparametric additive hazards
model are obtained as the
solution \hat{\beta}
to a quadratic system of linear equations
D\beta=d
. The
(integrated) martingale residuals \epsilon_i
for
i=1,...,n
are vectors, of length
corresponding to the number of covariates, so that
D(\hat{\beta}-\beta_0) -d \approx \epsilon_1+\cdots+\epsilon_n
The residuals estimate integrated
martingales and are
asymptotically distributed as mean-zero IID multivariate Gaussian. They can be used to derive a sandwich-type variance
estimator for regression coefficients (implemented in
summary.ahaz
when robust=TRUE
is specified). They can moreover be used for implementing consistent standard error
estimation under clustering; or for implementing resampling-based
inferential methods.
See Martinussen & Scheike (2006), Chapter 5.4 for details.
Value
For type="coef"
and type="lp"
, a vector of
predictions.
For type="coef"
, a matrix of (integrated) martingale
residuals, with number of columns corresponding to the number of
covariates.
For type="cumhaz"
, an object with S3 class "cumahaz"
consisting of:
time |
Jump times for the cumulative hazard estimate. |
cumhaz |
The cumulative hazard estimate. |
event |
Status at jump times (1 corresponds to death, 0 corresponds to entry/exit). |
References
Martinussen, T. & Scheike, T. H. & (2006). Dynamic Regression Models for Survival Data. Springer.
See Also
ahaz
, summary.ahaz
, plot.cumahaz
.
Examples
data(sorlie)
set.seed(10101)
# Break ties
time <- sorlie$time+runif(nrow(sorlie))*1e-2
# Survival data + covariates
surv <- Surv(time,sorlie$status)
X <- as.matrix(sorlie[,15:24])
# Fit additive hazards regression model
fit <- ahaz(surv, X)
# Parameter estimates
coef(fit)
# Linear predictor, equivalent to X%*%coef(fit)
predict(fit,type="lp")
# Cumulative baseline hazard
cumahaz <- predict(fit, type="cumhaz")
# Residuals - model fit
resid <- predict(fit, type = "residuals")
# Decorrelate, standardize, and check QQ-plots
stdres <- apply(princomp(resid)$scores,2,function(x){x/sd(x)})
par(mfrow = c(2,2))
for(i in 1:4){
qqnorm(stdres[,i])
abline(c(0,1))
}
# Residuals - alternative variance estimation
resid <- residuals(fit)
cov1 <- summary(fit)$coef[,2]
invD <- solve(fit$D)
Best<-t(resid)%*%resid
cov2 <- invD %*% Best %*% invD
# Compare with (nonrobust) SEs from 'summary.ahaz'
plot(cov1, sqrt(diag(cov2)),xlab="Nonrobust",ylab="Robust")
abline(c(0,1))