strip.plot {agricolae} | R Documentation |
Strip-Plot analysis
Description
The variance analysis of a strip-plot design is divided into three parts: the horizontal-factor analysis, the vertical-factor analysis, and the interaction analysis.
Usage
strip.plot(BLOCK, COL, ROW, Y)
Arguments
BLOCK |
replications |
COL |
Factor column |
ROW |
Factor row |
Y |
Variable, response |
Details
The strip-plot design is specifically suited for a two-factor experiment in which the desired precision for measuring the interaction effects between the two factors is higher than that for measuring the main efect two factors
Value
Data and analysis of the variance of the strip plot design.
Author(s)
Felipe de Mendiburu
References
Statistical procedures for agricultural research. Kwanchai A. Gomez, Arturo A. Gomez. Second Edition. 1984.
See Also
ssp.plot
, sp.plot
, design.split
,
design.strip
Examples
# Yield
library(agricolae)
data(huasahuasi)
YIELD<-huasahuasi$YIELD
market <- YIELD$y1da + YIELD$y2da
non_market <- YIELD$y3da
yield <- market + non_market
model<-with(YIELD,strip.plot(block, clon, trt, yield))
out1<-with(YIELD,LSD.test(yield,clon,model$gl.a,model$Ea))
oldpar<-par(mar=c(3,8,1,1),cex=0.8)
plot(out1,xlim=c(0,80),horiz=TRUE,las=1)
out2<-with(YIELD,LSD.test(yield,trt,model$gl.b,model$Eb))
plot(out2,xlim=c(0,80),horiz=TRUE,las=1)
par(oldpar)
[Package agricolae version 1.3-7 Index]