| make_agfh_sampler {agfh} | R Documentation |
Maker Function: Agnostic Fay-Herriot Sampler
Description
A maker function that returns a function. The returned function is a sampler for the agnostic Fay-Herriot model.
Arguments
X |
observed independent data to be analyzed |
Y |
observed dependent data to be analyzed |
D |
known precisions of response |
var_gamma_a |
latent variance prior parameter, |
var_gamma_b |
latent variance prior parameter, |
S |
vector of starting support values for |
kern.a0 |
scalar variance parameter of GP kernel |
kern.a1 |
scalar lengthscale parameter of GP kernel |
kern.fuzz |
scalar noise variance of kernel |
Details
Creates a Metropolis-within-Gibbs sampler of the agnostic Fay-Herriot model (AGFH).
Value
Returns a sampler, itself a function of initial parameter values (a list with values for \beta, \theta, the latent variance of \theta, and starting values for g(.), typically zeros), number of samples, thinning rate, and scale of Metropolis-Hastings jumps for \theta sampling.
Source
Marten Thompson thom7058@umn.edu
Examples
n <- 10
X <- matrix(1:n, ncol=1)
Y <- 2*X + rnorm(n, sd=1.1)
D <- rep(1, n)
ag <- make_agfh_sampler(X, Y, D)
params.init <- list(
beta=1,
theta=rep(0,n),
theta.var=1,
gamma=rep(0,n)
)
ag.out <- ag(params.init, 5, 1, 0.1)