agfh_theta_new_pred {agfh} | R Documentation |
Agnostic Fay-Herriot Hierarchical Bayesian Model Predictions at Latent Level
Description
Find predictions of \theta
using posterior samples from the AGFH model
Usage
agfh_theta_new_pred(X_new, beta_samples, theta_var_samples)
Arguments
X_new |
single new independent data to be analyzed |
beta_samples |
posterior samples of latent regression parameter |
theta_var_samples |
posterior samples of latent variance parameter |
Details
X_new
should be 1
x
p
shaped.
beta_samples
and theta_var_samples
should contain the same number of samples (columns for the former, length of the latter).
Value
Vector containing n samples-many estimates of \theta
at X_new
.
Source
Marten Thompson thom7058@umn.edu
Examples
p <- 3
n.post.samp <- 10
X.new <- matrix(rep(1,p), nrow=1)
beta.samp <- matrix(rnorm(n.post.samp*p, mean=2, sd=0.1), ncol=n.post.samp)
thvar.samp <- runif(n.post.samp, 0.1, 1)
th.preds <- agfh_theta_new_pred(X.new, beta.samp, thvar.samp)
[Package agfh version 0.2.1 Index]