| get_semirandom {adproclus} | R Documentation |
Generate initial semi-random start
Description
Generate an initial semi-random start for the (low dimensional) Additive
Profile Clustering
algorithm (see adproclus and adproclus_low_dim).
Usage
get_semirandom(data, nclusters, seed = NULL)
Arguments
data |
Object-by-variable data matrix of class |
nclusters |
Number of clusters to be used. Must be a positive integer. |
seed |
Integer. Seed for the random number generator. Default: NULL |
Details
An initial cluster membership matrix A is generated by
finding the best A conditional
on an initial profile matrix
P generated by drawing k randomly chosen, distinct,
rows from data (for details, see Depril et al., 2012).
Warning: This function does not obtain an ADPRCOLUS model. To
perform aditive profile clustering, see adproclus.
Value
get_semirandom returns a list with the following components:
typeA character string denoting the type of start ('Semi-random Start')
AAn initial Membership matrix
References
Wilderjans, T. F., Ceulemans, E., Van Mechelen, I., & Depril, D. (2010). ADPROCLUS: a graphical user interface for fitting additive profile clustering models to object by variable data matrices. Behavior Research Methods, 43(1), 56-65.
Depril, D., Van Mechelen, I., & Mirkin, B. (2008). Algorithms for additive clustering of rectangular data tables. Computational Statistics and Data Analysis, 52, 4923-4938.
#' Depril, D., Van Mechelen, I., & Wilderjans, T. F. (2012). Lowdimensional additive overlapping clustering. Journal of classification, 29, 297-320.
See Also
adproclus,adproclus_low_dimfor details about membership and profile matrices
get_randomfor generating random starts
get_rationalfor generating rational starts
Examples
# Obtain data from data set "Stackloss" and generate start allocation
start_allocation <- get_semirandom(stackloss, 3)$A