get_random {adproclus} | R Documentation |
Generate initial random start
Description
Generate an initial random start for the (low dimensional) Additive Profile
Clustering algorithm (see adproclus
and
adproclus_low_dim
).
Usage
get_random(data, nclusters, seed = NULL)
Arguments
data |
Object-by-variable data matrix of class |
nclusters |
Number of clusters to be used. Must be a positive integer. |
seed |
Integer. Seed for the random number generator. Default: NULL |
Details
get_random
generates a random initial binary membership matrix
A such that each entry is an independen draw from a
Bernoulli Distribution with \pi = 0.5
.
For generating an initial start from random draws from the data, see
get_semirandom
.
For generating an initial start based on a specific set of initial cluster
centers, see get_rational
.
Warning: This function does not obtain an ADPRCOLUS model.
To perform aditive profile clustering, see adproclus
.
Value
get_random()
returns a list with the following components:
type
A character string denoting the type of start ('Random Start')
A
A randomly generated initial Membership matrix
References
Wilderjans, T. F., Ceulemans, E., Van Mechelen, I., & Depril, D. (2010). ADPROCLUS: a graphical user interface for fitting additive profile clustering models to object by variable data matrices. Behavior Research Methods, 43(1), 56-65.
Depril, D., Van Mechelen, I., & Mirkin, B. (2008). Algorithms for additive clustering of rectangular data tables. Computational Statistics and Data Analysis, 52, 4923-4938.
Depril, D., Van Mechelen, I., & Wilderjans, T. F. (2012). Lowdimensional additive overlapping clustering. Journal of classification, 29, 297-320.
See Also
adproclus
,adproclus_low_dim
for details about membership and profile matrices
get_semirandom
for generating semi-random starts
get_rational
for generating rational starts
Examples
# Obtain data from data set "Stackloss" and generate start allocation
start_allocation <- get_random(stackloss, 3)$A