derive_vars_computed {admiral} | R Documentation |
Adds Variable(s) Computed from the Analysis Value of one or more Parameters
Description
Adds Variable(s) computed from the analysis value of one or more parameters.
It is expected that the value of the new variable is defined by an expression
using the analysis values of other parameters. For example Body Mass Index at
Baseline (BMIBL
) in ADSL
can be derived from of HEIGHT and WEIGHT
parameters in ADVS
.
Usage
derive_vars_computed(
dataset,
dataset_add,
by_vars,
parameters,
new_vars,
filter_add = NULL,
constant_by_vars = NULL,
constant_parameters = NULL
)
Arguments
dataset |
The variables specified by the |
dataset_add |
Additional dataset The variables specified by the The variable specified by |
by_vars |
Grouping variables Grouping variables uniquely identifying a set of records for which
Permitted Values: list of variables created by exprs() |
parameters |
Required parameter codes It is expected that all parameter codes ( If observations should be considered which do not have a parameter code,
e.g., if an SDTM dataset is used, temporary parameter codes can be derived
by specifying a list of expressions. The name of the element defines the
temporary parameter code and the expression defines the condition for
selecting the records. For example,
Unnamed elements in the list of expressions are considered as parameter
codes. For example, Permitted Values: A character vector of |
new_vars |
Name of the newly created variables The specified variables are set to the specified values. The values of
variables of the parameters specified by exprs( BMIBL = (AVAL.WEIGHT / (AVAL.HEIGHT/100)^2) ) defines the value for the new variable. Variable names in the expression must not contain more than one dot. Permitted Values: List of variable-value pairs |
filter_add |
Filter condition of additional dataset The specified condition is applied to the additional dataset before deriving the new variable, i.e., only observations fulfilling the condition are taken into account. Permitted Values: a condition |
constant_by_vars |
By variables for constant parameters The constant parameters (parameters that are measured only once) are merged to the other parameters using the specified variables. (Refer to the Example) Permitted Values: list of variables |
constant_parameters |
Required constant parameter codes It is expected that all the parameter codes ( If observations should be considered which do not have a parameter code,
e.g., if an SDTM dataset is used, temporary parameter codes can be derived
by specifying a list of expressions. The name of the element defines the
temporary parameter code and the expression defines the condition for
selecting the records. For example Unnamed elements in the list of expressions are considered as parameter
codes. For example, Permitted Values: A character vector of |
Details
For each group (with respect to the variables specified for the
by_vars
argument), the values of the new variables (new_vars
) are
computed based on the parameters in the additional dataset
(dataset_add
) and then the new variables are merged to the input
dataset (dataset
).
Value
The input dataset with the new variables added.
See Also
General Derivation Functions for all ADaMs that returns variable appended to dataset:
derive_var_extreme_flag()
,
derive_var_joined_exist_flag()
,
derive_var_merged_ef_msrc()
,
derive_var_merged_exist_flag()
,
derive_var_merged_summary()
,
derive_var_obs_number()
,
derive_var_relative_flag()
,
derive_vars_joined()
,
derive_vars_merged()
,
derive_vars_merged_lookup()
,
derive_vars_transposed()
Examples
library(tibble)
library(dplyr)
# Example 1: Derive BMIBL
adsl <- tribble(
~STUDYID, ~USUBJID, ~AGE, ~AGEU,
"PILOT01", "01-1302", 61, "YEARS",
"PILOT01", "17-1344", 64, "YEARS"
)
advs <- tribble(
~STUDYID, ~USUBJID, ~PARAMCD, ~PARAM, ~VISIT, ~AVAL, ~AVALU, ~ABLFL,
"PILOT01", "01-1302", "HEIGHT", "Height (cm)", "SCREENING", 177.8, "cm", "Y",
"PILOT01", "01-1302", "WEIGHT", "Weight (kg)", "SCREENING", 81.19, "kg", "N",
"PILOT01", "01-1302", "WEIGHT", "Weight (kg)", "BASELINE", 82.1, "kg", "Y",
"PILOT01", "01-1302", "WEIGHT", "Weight (kg)", "WEEK 2", 81.19, "kg", "N",
"PILOT01", "01-1302", "WEIGHT", "Weight (kg)", "WEEK 4", 82.56, "kg", "N",
"PILOT01", "01-1302", "WEIGHT", "Weight (kg)", "WEEK 6", 80.74, "kg", "N",
"PILOT01", "17-1344", "HEIGHT", "Height (cm)", "SCREENING", 163.5, "cm", "Y",
"PILOT01", "17-1344", "WEIGHT", "Weight (kg)", "SCREENING", 58.06, "kg", "N",
"PILOT01", "17-1344", "WEIGHT", "Weight (kg)", "BASELINE", 58.06, "kg", "Y",
"PILOT01", "17-1344", "WEIGHT", "Weight (kg)", "WEEK 2", 58.97, "kg", "N",
"PILOT01", "17-1344", "WEIGHT", "Weight (kg)", "WEEK 4", 57.97, "kg", "N",
"PILOT01", "17-1344", "WEIGHT", "Weight (kg)", "WEEK 6", 58.97, "kg", "N"
)
derive_vars_computed(
dataset = adsl,
dataset_add = advs,
by_vars = exprs(STUDYID, USUBJID),
parameters = c("WEIGHT", "HEIGHT"),
new_vars = exprs(BMIBL = compute_bmi(height = AVAL.HEIGHT, weight = AVAL.WEIGHT)),
filter_add = ABLFL == "Y"
)