derive_var_merged_exist_flag {admiral} | R Documentation |
Merge an Existence Flag
Description
Adds a flag variable to the input dataset which indicates if there exists at least one observation in another dataset fulfilling a certain condition.
Note: This is a wrapper function for the more generic derive_vars_merged()
.
Usage
derive_var_merged_exist_flag(
dataset,
dataset_add,
by_vars,
new_var,
condition,
true_value = "Y",
false_value = NA_character_,
missing_value = NA_character_,
filter_add = NULL
)
Arguments
dataset |
Input dataset The variables specified by the |
dataset_add |
Additional dataset The variables specified by the |
by_vars |
Grouping variables Permitted Values: list of variables created by |
new_var |
New variable The specified variable is added to the input dataset. |
condition |
Condition The condition is evaluated at the additional dataset ( |
true_value |
True value |
false_value |
False value |
missing_value |
Values used for missing information The new variable is set to the specified value for all by groups without observations in the additional dataset. Permitted Value: A character scalar |
filter_add |
Filter for additional data Only observations fulfilling the specified condition are taken into account for flagging. If the argument is not specified, all observations are considered. Permitted Values: a condition |
Details
The additional dataset is restricted to the observations matching the
filter_add
condition.The new variable is added to the input dataset and set to the true value (
true_value
) if for the by group at least one observation exists in the (restricted) additional dataset where the condition evaluates toTRUE
. It is set to the false value (false_value
) if for the by group at least one observation exists and for all observations the condition evaluates toFALSE
orNA
. Otherwise, it is set to the missing value (missing_value
).
Value
The output dataset contains all observations and variables of the
input dataset and additionally the variable specified for new_var
derived
from the additional dataset (dataset_add
).
See Also
General Derivation Functions for all ADaMs that returns variable appended to dataset:
derive_var_extreme_flag()
,
derive_var_joined_exist_flag()
,
derive_var_merged_ef_msrc()
,
derive_var_merged_summary()
,
derive_var_obs_number()
,
derive_var_relative_flag()
,
derive_vars_computed()
,
derive_vars_joined()
,
derive_vars_merged()
,
derive_vars_merged_lookup()
,
derive_vars_transposed()
Examples
library(dplyr, warn.conflicts = FALSE)
dm <- tribble(
~STUDYID, ~DOMAIN, ~USUBJID, ~AGE, ~AGEU,
"PILOT01", "DM", "01-1028", 71, "YEARS",
"PILOT01", "DM", "04-1127", 84, "YEARS",
"PILOT01", "DM", "06-1049", 60, "YEARS"
)
ae <- tribble(
~STUDYID, ~DOMAIN, ~USUBJID, ~AETERM, ~AEREL,
"PILOT01", "AE", "01-1028", "ERYTHEMA", "POSSIBLE",
"PILOT01", "AE", "01-1028", "PRURITUS", "PROBABLE",
"PILOT01", "AE", "06-1049", "SYNCOPE", "POSSIBLE",
"PILOT01", "AE", "06-1049", "SYNCOPE", "PROBABLE"
)
derive_var_merged_exist_flag(
dm,
dataset_add = ae,
by_vars = exprs(STUDYID, USUBJID),
new_var = AERELFL,
condition = AEREL == "PROBABLE"
) %>%
select(STUDYID, USUBJID, AGE, AGEU, AERELFL)
vs <- tribble(
~STUDYID, ~DOMAIN, ~USUBJID, ~VISIT, ~VSTESTCD, ~VSSTRESN, ~VSBLFL,
"PILOT01", "VS", "01-1028", "SCREENING", "HEIGHT", 177.8, NA,
"PILOT01", "VS", "01-1028", "SCREENING", "WEIGHT", 98.88, NA,
"PILOT01", "VS", "01-1028", "BASELINE", "WEIGHT", 99.34, "Y",
"PILOT01", "VS", "01-1028", "WEEK 4", "WEIGHT", 98.88, NA,
"PILOT01", "VS", "04-1127", "SCREENING", "HEIGHT", 165.1, NA,
"PILOT01", "VS", "04-1127", "SCREENING", "WEIGHT", 42.87, NA,
"PILOT01", "VS", "04-1127", "BASELINE", "WEIGHT", 41.05, "Y",
"PILOT01", "VS", "04-1127", "WEEK 4", "WEIGHT", 41.73, NA,
"PILOT01", "VS", "06-1049", "SCREENING", "HEIGHT", 167.64, NA,
"PILOT01", "VS", "06-1049", "SCREENING", "WEIGHT", 57.61, NA,
"PILOT01", "VS", "06-1049", "BASELINE", "WEIGHT", 57.83, "Y",
"PILOT01", "VS", "06-1049", "WEEK 4", "WEIGHT", 58.97, NA
)
derive_var_merged_exist_flag(
dm,
dataset_add = vs,
by_vars = exprs(STUDYID, USUBJID),
filter_add = VSTESTCD == "WEIGHT" & VSBLFL == "Y",
new_var = WTBLHIFL,
condition = VSSTRESN > 90,
false_value = "N",
missing_value = "M"
) %>%
select(STUDYID, USUBJID, AGE, AGEU, WTBLHIFL)