| derive_param_exist_flag {admiral} | R Documentation |
Add an Existence Flag Parameter
Description
Add a new parameter indicating that a certain event exists in a dataset.
AVALC and AVAL indicate if an event occurred or not. For example, the
function can derive a parameter indicating if there is measurable disease at
baseline.
Usage
derive_param_exist_flag(
dataset = NULL,
dataset_ref,
dataset_add,
condition,
true_value = "Y",
false_value = NA_character_,
missing_value = NA_character_,
filter_add = NULL,
by_vars = get_admiral_option("subject_keys"),
set_values_to
)
Arguments
dataset |
Input dataset The variables specified by the |
dataset_ref |
Reference dataset, e.g., ADSL The variables specified in |
dataset_add |
Additional dataset The variables specified by the This dataset is used to check if an event occurred or not. Any observation
in the dataset fulfilling the event condition ( |
condition |
Event condition The condition is evaluated at the additional dataset ( For all groups where it evaluates as For all groups where it evaluates as For all groups not present in the additional dataset |
true_value |
True value For all groups with at least one observations in the additional dataset
( Default: Permitted Value: A character scalar |
false_value |
False value For all groups with at least one observations in the additional dataset
( Default: Permitted Value: A character scalar |
missing_value |
Values used for missing information For all groups without an observation in the additional dataset
( Default: Permitted Value: A character scalar |
filter_add |
Filter for additional data Only observations fulfilling the specified condition are taken into account for flagging. If the parameter is not specified, all observations are considered. Permitted Values: a condition |
by_vars |
Grouping variables Permitted Values: list of variables created by |
set_values_to |
Variables to set A named list returned by |
Details
The additional dataset (
dataset_add) is restricted to the observations matching thefilter_addcondition.For each group in
dataset_refa new observation is created.The
AVALCvariable is added and set to the true value (true_value) if for the group at least one observation exists in the (restricted) additional dataset where the condition evaluates toTRUE.It is set to the false value (
false_value) if for the group at least one observation exists and for all observations the condition evaluates toFALSEorNA.Otherwise, it is set to the missing value (
missing_value), i.e., for those groups not indataset_add.
The variables specified by the
set_values_toparameter are added to the new observations.The new observations are added to input dataset.
Value
The input dataset with a new parameter indicating if an event
occurred (AVALC and the variables specified by by_vars
and set_value_to are populated for the new parameter).
See Also
BDS-Findings Functions for adding Parameters/Records:
default_qtc_paramcd(),
derive_expected_records(),
derive_extreme_event(),
derive_extreme_records(),
derive_locf_records(),
derive_param_bmi(),
derive_param_bsa(),
derive_param_computed(),
derive_param_doseint(),
derive_param_exposure(),
derive_param_framingham(),
derive_param_map(),
derive_param_qtc(),
derive_param_rr(),
derive_param_wbc_abs(),
derive_summary_records()
Examples
library(tibble)
library(dplyr, warn.conflicts = FALSE)
library(lubridate)
# Derive a new parameter for measurable disease at baseline
adsl <- tribble(
~USUBJID,
"1",
"2",
"3"
) %>%
mutate(STUDYID = "XX1234")
tu <- tribble(
~USUBJID, ~VISIT, ~TUSTRESC,
"1", "SCREENING", "TARGET",
"1", "WEEK 1", "TARGET",
"1", "WEEK 5", "TARGET",
"1", "WEEK 9", "NON-TARGET",
"2", "SCREENING", "NON-TARGET",
"2", "SCREENING", "NON-TARGET"
) %>%
mutate(
STUDYID = "XX1234",
TUTESTCD = "TUMIDENT"
)
derive_param_exist_flag(
dataset_ref = adsl,
dataset_add = tu,
filter_add = TUTESTCD == "TUMIDENT" & VISIT == "SCREENING",
condition = TUSTRESC == "TARGET",
false_value = "N",
missing_value = "N",
set_values_to = exprs(
AVAL = yn_to_numeric(AVALC),
PARAMCD = "MDIS",
PARAM = "Measurable Disease at Baseline"
)
)