derive_param_computed {admiral} | R Documentation |
Adds a Parameter Computed from the Analysis Value of Other Parameters
Description
Adds a parameter computed from the analysis value of other parameters. It is expected that the analysis value of the new parameter is defined by an expression using the analysis values of other parameters. For example mean arterial pressure (MAP) can be derived from systolic (SYSBP) and diastolic blood pressure (DIABP) with the formula
MAP = \frac{SYSBP + 2 DIABP}{3}
Usage
derive_param_computed(
dataset = NULL,
dataset_add = NULL,
by_vars,
parameters,
set_values_to,
filter = NULL,
constant_by_vars = NULL,
constant_parameters = NULL,
keep_nas = FALSE
)
Arguments
dataset |
Input dataset The variables specified by the The variable specified by |
dataset_add |
Additional dataset The variables specified by the The variable specified by If the argument is specified, the observations of the additional dataset
are considered in addition to the observations from the input dataset
( |
by_vars |
Grouping variables For each group defined by Permitted Values: list of variables created by |
parameters |
Required parameter codes It is expected that all parameter codes ( If observations should be considered which do not have a parameter code,
e.g., if an SDTM dataset is used, temporary parameter codes can be derived
by specifying a list of expressions. The name of the element defines the
temporary parameter code and the expression the condition for selecting the
records. For example Unnamed elements in the list of expressions are considered as parameter
codes. For example, Permitted Values: A character vector of |
set_values_to |
Variables to be set The specified variables are set to the specified values for the new
observations. The values of variables of the parameters specified by
exprs( AVAL = (AVAL.SYSBP + 2 * AVAL.DIABP) / 3, PARAMCD = "MAP" ) defines the analysis value and parameter code for the new parameter. Variable names in the expression must not contain more than one dot. Permitted Values: List of variable-value pairs |
filter |
Filter condition The specified condition is applied to the input dataset before deriving the new parameter, i.e., only observations fulfilling the condition are taken into account. Permitted Values: a condition |
constant_by_vars |
By variables for constant parameters The constant parameters (parameters that are measured only once) are merged to the other parameters using the specified variables. (Refer to Example 2) Permitted Values: list of variables created by |
constant_parameters |
Required constant parameter codes It is expected that all the parameter codes ( If observations should be considered which do not have a parameter code,
e.g., if an SDTM dataset is used, temporary parameter codes can be derived
by specifying a list of expressions. The name of the element defines the
temporary parameter code and the expression the condition for selecting the
records. For example Unnamed elements in the list of expressions are considered as parameter
codes. For example, Permitted Values: A character vector of |
keep_nas |
Keep observations with If the argument is set to |
Details
For each group (with respect to the variables specified for the
by_vars
parameter) an observation is added to the output dataset if the
filtered input dataset (dataset
) or the additional dataset
(dataset_add
) contains exactly one observation for each parameter code
specified for parameters
.
For the new observations the variables specified for set_values_to
are
set to the provided values. The values of the other variables of the input
dataset are set to NA
.
Value
The input dataset with the new parameter added. Note, a variable will only
be populated in the new parameter rows if it is specified in by_vars
.
See Also
BDS-Findings Functions for adding Parameters/Records:
default_qtc_paramcd()
,
derive_expected_records()
,
derive_extreme_event()
,
derive_extreme_records()
,
derive_locf_records()
,
derive_param_bmi()
,
derive_param_bsa()
,
derive_param_doseint()
,
derive_param_exist_flag()
,
derive_param_exposure()
,
derive_param_framingham()
,
derive_param_map()
,
derive_param_qtc()
,
derive_param_rr()
,
derive_param_wbc_abs()
,
derive_summary_records()
Examples
library(tibble)
library(dplyr)
library(lubridate)
# Example 1a: Derive MAP
advs <- tribble(
~USUBJID, ~PARAMCD, ~PARAM, ~AVAL, ~AVALU, ~VISIT,
"01-701-1015", "DIABP", "Diastolic Blood Pressure (mmHg)", 51, "mmHg", "BASELINE",
"01-701-1015", "DIABP", "Diastolic Blood Pressure (mmHg)", 50, "mmHg", "WEEK 2",
"01-701-1015", "SYSBP", "Systolic Blood Pressure (mmHg)", 121, "mmHg", "BASELINE",
"01-701-1015", "SYSBP", "Systolic Blood Pressure (mmHg)", 121, "mmHg", "WEEK 2",
"01-701-1028", "DIABP", "Diastolic Blood Pressure (mmHg)", 79, "mmHg", "BASELINE",
"01-701-1028", "DIABP", "Diastolic Blood Pressure (mmHg)", 80, "mmHg", "WEEK 2",
"01-701-1028", "SYSBP", "Systolic Blood Pressure (mmHg)", 130, "mmHg", "BASELINE",
"01-701-1028", "SYSBP", "Systolic Blood Pressure (mmHg)", 132, "mmHg", "WEEK 2"
) %>%
mutate(
ADT = case_when(
VISIT == "BASELINE" ~ as.Date("2024-01-10"),
VISIT == "WEEK 2" ~ as.Date("2024-01-24")
),
ADTF = NA_character_
)
derive_param_computed(
advs,
by_vars = exprs(USUBJID, VISIT),
parameters = c("SYSBP", "DIABP"),
set_values_to = exprs(
AVAL = (AVAL.SYSBP + 2 * AVAL.DIABP) / 3,
PARAMCD = "MAP",
PARAM = "Mean Arterial Pressure (mmHg)",
AVALU = "mmHg",
ADT = ADT.SYSBP
)
)
# Example 1b: Using option `keep_nas = TRUE` to derive MAP in the case where some/all values
# of a variable used in the computation are missing
derive_param_computed(
advs,
by_vars = exprs(USUBJID, VISIT),
parameters = c("SYSBP", "DIABP"),
set_values_to = exprs(
AVAL = (AVAL.SYSBP + 2 * AVAL.DIABP) / 3,
PARAMCD = "MAP",
PARAM = "Mean Arterial Pressure (mmHg)",
AVALU = "mmHg",
ADT = ADT.SYSBP,
ADTF = ADTF.SYSBP
),
keep_nas = TRUE
)
# Example 2: Derive BMI where height is measured only once
advs <- tribble(
~USUBJID, ~PARAMCD, ~PARAM, ~AVAL, ~AVALU, ~VISIT,
"01-701-1015", "HEIGHT", "Height (cm)", 147.0, "cm", "SCREENING",
"01-701-1015", "WEIGHT", "Weight (kg)", 54.0, "kg", "SCREENING",
"01-701-1015", "WEIGHT", "Weight (kg)", 54.4, "kg", "BASELINE",
"01-701-1015", "WEIGHT", "Weight (kg)", 53.1, "kg", "WEEK 2",
"01-701-1028", "HEIGHT", "Height (cm)", 163.0, "cm", "SCREENING",
"01-701-1028", "WEIGHT", "Weight (kg)", 78.5, "kg", "SCREENING",
"01-701-1028", "WEIGHT", "Weight (kg)", 80.3, "kg", "BASELINE",
"01-701-1028", "WEIGHT", "Weight (kg)", 80.7, "kg", "WEEK 2"
)
derive_param_computed(
advs,
by_vars = exprs(USUBJID, VISIT),
parameters = "WEIGHT",
set_values_to = exprs(
AVAL = AVAL.WEIGHT / (AVAL.HEIGHT / 100)^2,
PARAMCD = "BMI",
PARAM = "Body Mass Index (kg/m^2)",
AVALU = "kg/m^2"
),
constant_parameters = c("HEIGHT"),
constant_by_vars = exprs(USUBJID)
)
# Example 3: Using data from an additional dataset and other variables than AVAL
qs <- tribble(
~USUBJID, ~AVISIT, ~QSTESTCD, ~QSORRES, ~QSSTRESN,
"1", "WEEK 2", "CHSF112", NA, 1,
"1", "WEEK 2", "CHSF113", "Yes", NA,
"1", "WEEK 2", "CHSF114", NA, 1,
"1", "WEEK 4", "CHSF112", NA, 2,
"1", "WEEK 4", "CHSF113", "No", NA,
"1", "WEEK 4", "CHSF114", NA, 1
)
adchsf <- tribble(
~USUBJID, ~AVISIT, ~PARAMCD, ~QSSTRESN, ~AVAL,
"1", "WEEK 2", "CHSF12", 1, 6,
"1", "WEEK 2", "CHSF14", 1, 6,
"1", "WEEK 4", "CHSF12", 2, 12,
"1", "WEEK 4", "CHSF14", 1, 6
) %>%
mutate(QSORRES = NA_character_)
derive_param_computed(
adchsf,
dataset_add = qs,
by_vars = exprs(USUBJID, AVISIT),
parameters = exprs(CHSF12, CHSF13 = QSTESTCD %in% c("CHSF113", "CHSF213"), CHSF14),
set_values_to = exprs(
AVAL = case_when(
QSORRES.CHSF13 == "Not applicable" ~ 0,
QSORRES.CHSF13 == "Yes" ~ 38,
QSORRES.CHSF13 == "No" ~ if_else(
QSSTRESN.CHSF12 > QSSTRESN.CHSF14,
25,
0
)
),
PARAMCD = "CHSF13"
)
)
# Example 4: Computing more than one variable
adlb_tbilialk <- tribble(
~USUBJID, ~PARAMCD, ~AVALC, ~ADTM, ~ADTF,
"1", "ALK2", "Y", "2021-05-13", NA_character_,
"1", "TBILI2", "Y", "2021-06-30", "D",
"2", "ALK2", "Y", "2021-12-31", "M",
"2", "TBILI2", "N", "2021-11-11", NA_character_,
"3", "ALK2", "N", "2021-04-03", NA_character_,
"3", "TBILI2", "N", "2021-04-04", NA_character_
) %>%
mutate(ADTM = ymd(ADTM))
derive_param_computed(
dataset_add = adlb_tbilialk,
by_vars = exprs(USUBJID),
parameters = c("ALK2", "TBILI2"),
set_values_to = exprs(
AVALC = if_else(AVALC.TBILI2 == "Y" & AVALC.ALK2 == "Y", "Y", "N"),
ADTM = pmax(ADTM.TBILI2, ADTM.ALK2),
ADTF = if_else(ADTM == ADTM.TBILI2, ADTF.TBILI2, ADTF.ALK2),
PARAMCD = "TB2AK2",
PARAM = "TBILI > 2 times ULN and ALKPH <= 2 times ULN"
),
keep_nas = TRUE
)