buffer {adehabitatMA} | R Documentation |
Compute Buffers Regions
Description
buffer
computes buffers regions from spatial objects belonging
to the following classes:
SpatialPoints
(all pixels located within a specified distance
of a point take the value one)
SpatialPointsDataFrame
with one column (this column is
considered to be a factor, and the buffer is computed for each level
of this factor)
SpatialLines
to compute buffers from lines.
SpatialPolygons
to compute buffers from polygons.
Usage
buffer(xy, x, dist)
Arguments
xy |
an object of class |
x |
an object inheriting the class |
dist |
a value of distance |
Value
An object of class SpatialPixelsDataFrame
.
Author(s)
Clement Calenge clement.calenge@ofb.gouv.fr
See Also
SpatialPixelsDataFrame-class
for additionnal
information on objects of class SpatialPixelsDataFrame
.
Examples
data(lynxjura)
# locs is the SpatialPointsDataFrame containing the
# locations of lynx indices in the Jura mountains
locs <- lynxjura$locs
head(locs)
## just for the sake of illustration: sample 100 points
suppressWarnings(RNGversion("3.5.0"))
set.seed(233)
locs <- locs[sample(1:nrow(locs), 100),]
# sa is the SpatialPixelsDataFrame object containing
# maps of the study area
sa <- lynxjura$map
# Buffer of 2000 m from all points
bu <- buffer(locs, sa, 2000)
image(bu)
# displays all the pixels of the study area within 2000 m
# of a point, for each type of indices (see ?lynxjura)
buani <- buffer(locs[,2], sa, 2000)
buani
par(mar=c(0,0,2,0))
opar<-par(mfrow=c(3,4))
lapply(1:11, function(i) {
image(buani[,i])
title(main = names(slot(buani, "data"))[i])
})
par(opar)
## buffer from a polygon
sa2 <- sa[,4]
sa2[[1]][sa2[[1]]<5000] <- NA
image(sa2)
## gets the contour line
gc <- getcontour(sa2)
plot(gc, add=TRUE)
## a buffer of 2000 metres
image(buffer(gc, sa, 2000))
plot(gc, add=TRUE)