testdim.multiblock {ade4} | R Documentation |
Selection of the number of dimension by two-fold cross-validation for multiblock methods
Description
Function to perform a two-fold cross-validation to select the optimal number of dimensions of multiblock methods, i.e., multiblock principal component analysis with instrumental Variables or multiblock partial least squares
Usage
## S3 method for class 'multiblock'
testdim(object, nrepet = 100, quantiles = c(0.25, 0.75), ...)
Arguments
object |
|
nrepet |
integer indicating the number of repetitions |
quantiles |
a vector indicating the lower and upper quantiles to compute |
... |
other arguments to be passed to methods |
Value
An object of class krandxval
Author(s)
Stéphanie Bougeard (stephanie.bougeard@anses.fr) and Stéphane Dray (stephane.dray@univ-lyon1.fr)
References
Stone M. (1974) Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society, 36, 111-147.
Bougeard, S. and Dray S. (2018) Supervised Multiblock Analysis in R with the ade4 Package. Journal of Statistical Software, 86 (1), 1-17. doi:10.18637/jss.v086.i01
See Also
mbpcaiv
, mbpls
,
randboot.multiblock
, as.krandxval
Examples
data(chickenk)
Mortality <- chickenk[[1]]
dudiY.chick <- dudi.pca(Mortality, center = TRUE, scale = TRUE, scannf =
FALSE)
ktabX.chick <- ktab.list.df(chickenk[2:5])
resmbpcaiv.chick <- mbpcaiv(dudiY.chick, ktabX.chick, scale = TRUE,
option = "uniform", scannf = FALSE)
## nrepet should be higher for a real analysis
test <- testdim(resmbpcaiv.chick, nrepet = 10)
test
if(adegraphicsLoaded())
plot(test)