score.pca {ade4} | R Documentation |
Graphs to Analyse a factor in PCA
Description
performs the canonical graph of a Principal Component Analysis.
Usage
## S3 method for class 'pca'
score(x, xax = 1, which.var = NULL, mfrow = NULL, csub = 2,
sub = names(x$tab), abline = TRUE, ...)
Arguments
x |
an object of class |
xax |
the column number for the used axis |
which.var |
the numbers of the kept columns for the analysis, otherwise all columns |
mfrow |
a vector of the form "c(nr,nc)", otherwise computed by a special own function |
csub |
a character size for sub-titles, used with |
sub |
a vector of string of characters to be inserted as sub-titles, otherwise the names of the variables |
abline |
a logical value indicating whether a regression line should be added |
... |
further arguments passed to or from other methods |
Author(s)
Daniel Chessel
Examples
data(deug)
dd1 <- dudi.pca(deug$tab, scan = FALSE)
score(dd1)
# The correlations are :
dd1$co[,1]
# [1] 0.7925 0.6532 0.7410 0.5287 0.5539 0.7416 0.3336 0.2755 0.4172
[Package ade4 version 1.7-22 Index]