randboot.multiblock {ade4} | R Documentation |
Bootstraped simulations for multiblock methods
Description
Function to perform bootstraped simulations for multiblock principal component analysis with instrumental variables or multiblock partial least squares, in order to get confidence intervals for some parameters, i.e., regression coefficients, variable and block importances
Usage
## S3 method for class 'multiblock'
randboot(object, nrepet = 199, optdim, ...)
Arguments
object |
|
nrepet |
integer indicating the number of repetitions |
optdim |
integer indicating the optimal number of dimensions, i.e., the optimal number of global components to be introduced in the model |
... |
other arguments to be passed to methods |
Value
A list containing objects of class krandboot
Author(s)
Stéphanie Bougeard (stephanie.bougeard@anses.fr) and Stéphane Dray (stephane.dray@univ-lyon1.fr)
References
Carpenter, J. and Bithell, J. (2000) Bootstrap confidence intervals: when, which, what? A practical guide for medical statisticians.Statistics in medicine, 19, 1141-1164.
Bougeard, S. and Dray S. (2018) Supervised Multiblock Analysis in R with the ade4 Package. Journal of Statistical Software, 86 (1), 1-17. doi:10.18637/jss.v086.i01
See Also
mbpcaiv
, mbpls
,
testdim.multiblock
, as.krandboot
Examples
data(chickenk)
Mortality <- chickenk[[1]]
dudiY.chick <- dudi.pca(Mortality, center = TRUE, scale = TRUE, scannf =
FALSE)
ktabX.chick <- ktab.list.df(chickenk[2:5])
resmbpcaiv.chick <- mbpcaiv(dudiY.chick, ktabX.chick, scale = TRUE,
option = "uniform", scannf = FALSE, nf = 4)
## nrepet should be higher for a real analysis
test <- randboot(resmbpcaiv.chick, optdim = 4, nrepet = 10)
test
if(adegraphicsLoaded())
plot(test$bipc)