dist.quant {ade4} | R Documentation |
Computation of Distance Matrices on Quantitative Variables
Description
computes on quantitative variables, some distance matrices as canonical, Joreskog and Mahalanobis.
Usage
dist.quant(df, method = NULL, diag = FALSE, upper = FALSE,
tol = 1e-07)
Arguments
df |
a data frame containing only quantitative variables |
method |
an integer between 1 and 3. If NULL the choice is made with a console message. See details |
diag |
a logical value indicating whether the diagonal of the distance matrix should be printed by ‘print.dist’ |
upper |
a logical value indicating whether the upper triangle of the distance matrix should be printed by ‘print.dist’ |
tol |
used in case 3 of |
Details
All the distances are of type d=\|x-y\|_A =
\sqrt{(x-y)^{t}A(x-y)}
- 1 = Canonical
A = Identity
- 2 = Joreskog
A=\frac{1}{diag(cov)}
- 3 = Mahalanobis
A = inv(cov)
Value
an object of class dist
Author(s)
Daniel Chessel
Stéphane Dray stephane.dray@univ-lyon1.fr
Examples
data(ecomor)
if(adegraphicsLoaded()) {
g1 <- scatter(dudi.pco(dist.quant(ecomor$morpho, 3), scan = FALSE), plot = FALSE)
g2 <- scatter(dudi.pco(dist.quant(ecomor$morpho, 2), scan = FALSE), plot = FALSE)
g3 <- scatter(dudi.pco(dist(scalewt(ecomor$morpho)), scan = FALSE), plot = FALSE)
g4 <- scatter(dudi.pco(dist.quant(ecomor$morpho, 1), scan = FALSE), plot = FALSE)
G <- ADEgS(list(g1, g2, g3, g4), layout = c(2, 2))
} else {
par(mfrow = c(2, 2))
scatter(dudi.pco(dist.quant(ecomor$morpho, 3), scan = FALSE))
scatter(dudi.pco(dist.quant(ecomor$morpho, 2), scan = FALSE))
scatter(dudi.pco(dist(scalewt(ecomor$morpho)), scan = FALSE))
scatter(dudi.pco(dist.quant(ecomor$morpho, 1), scan = FALSE))
par(mfrow = c(1, 1))
}
[Package ade4 version 1.7-22 Index]