wax {adana} | R Documentation |
Whole Arithmetic Crossover
Description
New offspring are produced by applying an arithmetic mean to all of the parents' chromosomes. (Davis, 1985; Back et.al, 1991; Michalewicz & Janikov, 1991; Michalewicz, 1992; Michalewicz, 1995).
Usage
wax(x1, x2, cxon, cxalfa, ...)
Arguments
x1 |
A vector. It contains the chromosomal information of parent-1. |
x2 |
A vector. It contains the chromosomal information of parent-2. |
cxon |
Number of offspring to be generated as a result of crossover |
cxalfa |
Alpha value. If no value is entered, it is randomly selected by the function in the range [0,1]. |
... |
Further arguments passed to or from other methods. |
Value
A matrix containing the generated offsprings.
Author(s)
Zeynel Cebeci & Erkut Tekeli
References
Davis, L. (1985). Aplaying adaptive algorithms to epistatics domains. In Proc. of the Int. Joint Conf. on Artificial Intellengence, Vol. 85, pp. 162-164.
Back, T., Hoffmeister, F. and Schwefel, H.P. (1991). A survey of evolution strategies. In Proc. of the 4th Int. Conf. on Genetic Algorithms, pp. 2-9. Morgan Kaufmann.
Michalewicz, Z. and Janikov, S.J. (1991). Genetic algorithms for numerical optimization. Statistics and Computing, 1(2), 75-91.
Michalewicz, Z. (1992). Genetic algorithms + data structures = evolution programs. Berlin-Heidelberg: Springer Verlag.
Michalewicz, Z. (1995). Genetic algorithms, numerical optimization and constraints. In Proc. of the 4th Int. Conf. on Genetic Algorithms. pp. 151-158. Morgan Kaufmann.
See Also
cross
,
px1
,
kpx
,
sc
,
rsc
,
hux
,
ux
,
ux2
,
mx
,
rrc
,
disc
,
atc
,
cpc
,
eclc
,
raoc
,
dc
,
ax
,
hc
,
sax
,
lax
,
bx
,
ebx
,
blxa
,
blxab
,
lapx
,
elx
,
geomx
,
spherex
,
pmx
,
mpmx
,
upmx
,
ox
,
ox2
,
mpx
,
erx
,
pbx
,
pbx2
,
cx
,
icx
,
smc
Examples
parent1 = c(1.1, 1.6, 0.0, 1.1, 1.4, 1.2)
parent2 = c(1.2, 0.0, 0.0, 1.5, 1.2, 1.4)
wax(parent1, parent2)