hgaoptim {adana} | R Documentation |
GA + optim hybridization function
Description
This function allows GA to hybridize with methods in the optim general-purpose optimization function for n-variable problems in R's basic stats package (R Core Team, 2021).
Usage
hgaoptim(genpop, fitfunc, hgaparams,
hgaftype, hgans, ...)
Arguments
genpop |
A matrix of individuals in the current population and their fitness values. |
fitfunc |
Fitness function |
hgaparams |
A list of parameters defined for use by the Optim function. |
hgaftype |
Types of fitness to transfer.
|
hgans |
Number of individuals to be transferred to the Optim. |
... |
Further arguments passed to or from other methods. |
Value
A matrix containing the updated population.
Author(s)
Zeynel Cebeci & Erkut Tekeli
References
R Core Team. (2021). R: A language and environmental for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
See Also
Examples
hgaparams = list(method="Nelder-Mead", poptim=0.05, pressel=0.5,
control = list(fnscale=1, maxit=100))
n = 5 # Size of population
m = 2 # Number of variables
lb = c(-5.12, -5.12) # Lower bounds for sample data
ub = c(5.12, 5.12) # Upper bounds for sample data
genpop = initval(n, m, lb=lb, ub=ub) # Sample population
fitfunc = function(x, ...) 2*(x[1]-1)^2 + 5*(x[2]-2)^2 + 10
fitvals = evaluate(fitfunc, genpop[,1:m])
genpop[,"fitval"]=fitvals
genpop
newpop = hgaoptim(genpop, fitfunc, hgaparams, hgaftype="r", hgans=3)
newpop