cross {adana} | R Documentation |
Crossover
Description
It is a wrapper function that calls crossover operators from a single function.
Usage
cross(crossfunc, matpool, cxon, cxpc, gatype, ...)
Arguments
crossfunc |
The name of the crossover operator |
matpool |
A matrix. Mating pool containing selected individuals. |
cxon |
Number of offspring to be generated as a result of crossover |
cxpc |
Crossover Ratio. Default value is 0.95 |
gatype |
Indicates the GA type. "gga" is assigned for generational refresh, and "ssga" for steady-state refresh. |
... |
Further arguments passed to or from other methods. |
Value
A matrix containing the generated offsprings.
Author(s)
Zeynel Cebeci & Erkut Tekeli
References
Cebeci, Z. (2021). R ile Genetik Algoritmalar ve Optimizasyon Uygulamalari, 535 p. Ankara:Nobel Akademik Yayincilik.
See Also
px1
,
kpx
,
sc
,
rsc
,
hux
,
ux
,
ux2
,
mx
,
rrc
,
disc
,
atc
,
cpc
,
eclc
,
raoc
,
dc
,
ax
,
hc
,
sax
,
wax
,
lax
,
bx
,
ebx
,
blxa
,
blxab
,
lapx
,
elx
,
geomx
,
spherex
,
pmx
,
mpmx
,
upmx
,
ox
,
ox2
,
mpx
,
erx
,
pbx
,
pbx2
,
cx
,
icx
,
smc
Examples
genpop = initbin(12,8) #Initial population
m = ncol(genpop)-2 #Number of Gene
sumx = function(x, ...) (sum(x)) #Fitness Function
fitvals = evaluate(fitfunc=sumx, genpop[,1:m]) #Fitness Values
genpop[,"fitval"] = fitvals
selidx = select(selfunc=selrws, fitvals) #Selection of Parents
matpool = genpop[selidx,] #Mating Pool
offsprings = cross(crossfunc=px1, matpool=matpool, #Crossing
cxon=2, cxpc=0.8, gatype="gga")
offsprings
offsprings = cross(crossfunc=kpx, matpool=matpool,
cxon=2, cxpc=0.8, gatype="ssga", cxps=0.5, cxk=2)
offsprings